
Matti Poutanen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6679741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive Sex Steroid Profiling in Multiple Tissues Reveals Novel Insights in Sex Steroid Distribution in Male Mice. Endocrinology, 2022, 163, .	2.8	10
2	Selective loss of kisspeptin signaling in oocytes causes progressive premature ovulatory failure. Human Reproduction, 2022, 37, 806-821.	0.9	12
3	The variant rs77559646 associated with aggressive prostate cancer disrupts <i>ANO7</i> mRNA splicing and protein expression. Human Molecular Genetics, 2022, 31, 2063-2077.	2.9	7
4	Congenital Hypothyroidism and Hyperthyroidism Alters Adrenal Gene Expression, Development, and Function. Thyroid, 2022, 32, 459-471.	4.5	6
5	AKR1D1 knockout mice develop a sex-dependent metabolic phenotype. Journal of Endocrinology, 2022, 253, 97-113.	2.6	7
6	Impact of Musashi-1 and Musashi-2 Double Knockdown on Notch Signaling and the Pathogenesis of Endometriosis. International Journal of Molecular Sciences, 2022, 23, 2851.	4.1	14
7	Preterm infant circulating sex steroid levels are not altered by transfusion with adult male plasma: a retrospective multicentre cohort study. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 577-582.	2.8	1
8	Low Progesterone and Low Estradiol Levels Associate With Abdominal Aortic Aneurysms in Men. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1413-e1425.	3.6	17
9	Histone H3K4me3 breadth in hypoxia reveals endometrial core functions and stress adaptation linked to endometriosis. IScience, 2022, 25, 104235.	4.1	4
10	Overexpression of Human Estrogen Biosynthetic Enzyme Hydroxysteroid (17beta) Dehydrogenase Type 1 Induces Adenomyosis-like Phenotype in Transgenic Mice. International Journal of Molecular Sciences, 2022, 23, 4815.	4.1	4
11	High intratumoral dihydrotestosterone is associated with antiandrogen resistance in VCaP prostate cancer xenografts in castrated mice. IScience, 2022, 25, 104287.	4.1	4
12	Exploring the Ion Channel TRPV2 and Testicular Macrophages in Mouse Testis. International Journal of Molecular Sciences, 2021, 22, 4727.	4.1	5
13	Testicular adenosine acts as a pro-inflammatory molecule: role of testicular peritubular cells. Molecular Human Reproduction, 2021, 27, .	2.8	8
14	Comparative Analysis of the Effects of Long-Term 3,5-diiodothyronine Treatment on the Murine Hepatic Proteome and Transcriptome Under Conditions of Normal Diet and High-Fat Diet. Thyroid, 2021, 31, 1135-1146.	4.5	7
15	Pulsed administration for physiological estrogen replacement in mice. F1000Research, 2021, 10, 809.	1.6	5
16	MALDI-IMS combined with shotgun proteomics identify and localize new factors in male infertility. Life Science Alliance, 2021, 4, e202000672.	2.8	7
17	The androgen receptor depends on ligandâ€binding domain dimerization for transcriptional activation. EMBO Reports, 2021, 22, e52764.	4.5	20
18	Genetic Ablation of MiR-22 Fosters Diet-Induced Obesity and NAFLD Development. Journal of Personalized Medicine, 2020, 10, 170.	2.5	21

#	Article	IF	CITATIONS
19	Role of kisspeptins in the control of the hypothalamic-pituitary-ovarian axis: old dogmas and new challenges. Fertility and Sterility, 2020, 114, 465-474.	1.0	27
20	Hydroxysteroid (17β) dehydrogenase 12 is essential for metabolic homeostasis in adult mice. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E494-E508.	3.5	12
21	Erbb4 regulates the oocyte microenvironment during folliculogenesis. Human Molecular Genetics, 2020, 29, 2813-2830.	2.9	16
22	Generation of an all-exon Esr2 deleted mouse line: Effects on fertility. Biochemical and Biophysical Research Communications, 2020, 529, 231-237.	2.1	14
23	Phosphorylation site S122 in estrogen receptor α has a tissueâ€dependent role in female mice. FASEB Journal, 2020, 34, 15991-16002.	0.5	7
24	Increased estrogen to androgen ratio enhances immunoglobulin levels and impairs B cell function in male mice. Scientific Reports, 2020, 10, 18334.	3.3	12
25	Glycovariant-based lateral flow immunoassay to detect ovarian cancer–associated serum CA125. Communications Biology, 2020, 3, 460.	4.4	23
26	A relational database to identify differentially expressed genes in the endometrium and endometriosis lesions. Scientific Data, 2020, 7, 284.	5.3	33
27	Exploratory Analysis of CA125-MGL and –STn Glycoforms in the Differential Diagnostics of Pelvic Masses. journal of applied laboratory medicine, The, 2020, 5, 263-272.	1.3	9
28	Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nature Communications, 2020, 11, 384.	12.8	56
29	Neonatal exposure to androgens dynamically alters gut microbiota architecture. Journal of Endocrinology, 2020, 247, 69-85.	2.6	12
30	Transcriptomic responses to hypoxia in endometrial and decidual stromal cells. Reproduction, 2020, 160, 39-51.	2.6	13
31	Interplay between gonadal hormones and postnatal overfeeding in defining sex-dependent differences in gut microbiota architecture. Aging, 2020, 12, 19979-20000.	3.1	14
32	Phenotypic characterization of transgenic mouse models overproducing hCG. , 2020, , 181-191.		0
33	Role of hydroxysteroid (17beta) dehydrogenase type 1 in reproductive tissues and hormone-dependent diseases. Molecular and Cellular Endocrinology, 2019, 489, 9-31.	3.2	17
34	Personalized Drug Sensitivity Screening for Bladder Cancer Using Conditionally Reprogrammed Patient-derived Cells. European Urology, 2019, 76, 430-434.	1.9	31
35	The gut microbiota is a major regulator of androgen metabolism in intestinal contents. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1182-E1192.	3.5	118
36	Europium Nanoparticle-Based Sialyl-Tn Monoclonal Antibody Discriminates Epithelial Ovarian Cancer–Associated CA125 from Benign Sources. journal of applied laboratory medicine, The, 2019, 4, 299-310.	1.3	12

#	Article	lF	CITATIONS
37	Gonadal hormone-dependent vsindependent effects of kisspeptin signaling in the control of body weight and metabolic homeostasis. Metabolism: Clinical and Experimental, 2019, 98, 84-94.	3.4	37
38	Biology and clinical relevance of Hydroxysteroid (17beta) dehydrogenase enzymes. Molecular and Cellular Endocrinology, 2019, 489, 1-2.	3.2	6
39	Interleukinâ€6 in the central amygdala is bioactive and co″ocalised with glucagon″ike peptideâ€1 receptor. Journal of Neuroendocrinology, 2019, 31, e12722.	2.6	7
40	Glucagon-Like Peptide-1-, but not Growth and Differentiation Factor 15-, Receptor Activation Increases the Number of Interleukin-6-Expressing Cells in the External Lateral Parabrachial Nucleus. Neuroendocrinology, 2019, 109, 310-321.	2.5	5
41	Lack of androgen receptor SUMOylation results in male infertility due to epididymal dysfunction. Nature Communications, 2019, 10, 777.	12.8	15
42	Simultaneous analysis by LC–MS/MS of 22 ketosteroids with hydroxylamine derivatization and underivatized estradiol from human plasma, serum and prostate tissue. Journal of Pharmaceutical and Biomedical Analysis, 2019, 164, 642-652.	2.8	52
43	Decidualization of Human Endometrial Stromal Fibroblasts is a Multiphasic Process Involving Distinct Transcriptional Programs. Reproductive Sciences, 2019, 26, 323-336.	2.5	45
44	Androgen receptor SUMOylation regulates bone mass in male mice. Molecular and Cellular Endocrinology, 2019, 479, 117-122.	3.2	7
45	Applying mass spectrometric methods to study androgen biosynthesis and metabolism in prostate cancer. Journal of Molecular Endocrinology, 2019, 62, R255-R267.	2.5	9
46	HSD17B12 Is Essential for the Metabolic Homeostasis in Adult Mice. FASEB Journal, 2019, 33, 582.7.	0.5	0
47	Kisspeptin signaling in oocytes is compulsory for ovulation in adult mice. FASEB Journal, 2019, 33, 580.5.	0.5	1
48	HSD17B1 expression induces inflammation-aided rupture of mammary gland myoepithelium. Endocrine-Related Cancer, 2018, 25, 393-406.	3.1	6
49	Analysis by LC–MS/MS of endogenous steroids from human serum, plasma, endometrium and endometriotic tissue. Journal of Pharmaceutical and Biomedical Analysis, 2018, 152, 165-172.	2.8	55
50	Secreted frizzled-related protein 2 (SFRP2) expression promotes lesion proliferation via canonical WNT signaling and indicates lesion borders in extraovarian endometriosis. Human Reproduction, 2018, 33, 817-831.	0.9	22
51	The Expression of HSD17B12 Is Associated with COX-2 Expression and Is Increased in High-Grade Epithelial Ovarian Cancer. Oncology, 2018, 94, 233-242.	1.9	15
52	Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria. Nucleic Acids Research, 2018, 46, 849-860.	14.5	30
53	Inducible Wnt16 inactivation: WNT16 regulates cortical bone thickness in adult mice. Journal of Endocrinology, 2018, 237, 113-122.	2.6	32
54	Antiandrogens Reduce Intratumoral Androgen Concentrations and Induce Androgen Receptor Expression in Castration-Resistant Prostate Cancer Xenografts. American Journal of Pathology, 2018, 188, 216-228.	3.8	9

Matti Poutanen

#	Article	IF	CITATIONS
55	Adrenals Contribute to Growth of Castration-Resistant VCaP Prostate Cancer Xenografts. American Journal of Pathology, 2018, 188, 2890-2901.	3.8	17
56	Metabolic regulation of female puberty via hypothalamic AMPK–kisspeptin signaling. Proceedings of the United States of America, 2018, 115, E10758-E10767.	7.1	55
57	Intratumoral androgen levels are linked to TMPRSS2-ERG fusion in prostate cancer. Endocrine-Related Cancer, 2018, 25, 807-819.	3.1	16
58	WNT16 overexpression partly protects against glucocorticoid-induced bone loss. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E597-E604.	3.5	19
59	Partial thyrocyteâ€specific Gα _s deficiency leads to rapidâ€onset hypothyroidism, hyperplasia, and papillary thyroid carcinomaâ€like lesions in mice. FASEB Journal, 2018, 32, 6239-6251.	0.5	9
60	Hydroxysteroid (17β) dehydrogenase 13 deficiency triggers hepatic steatosis and inflammation in mice. FASEB Journal, 2018, 32, 3434-3447.	0.5	49
61	Preface. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 215-218.	4.7	0
62	Hyperthyroidism and Papillary Thyroid Carcinoma in Thyrotropin Receptor D633H Mutant Mice. Thyroid, 2018, 28, 1372-1386.	4.5	12
63	Hydroxysteroid (17β) dehydrogenase 1 expressed by Sertoli cells contributes to steroid synthesis and is required for male fertility. FASEB Journal, 2018, 32, 3229-3241.	0.5	14
64	NLRP3 in somatic non-immune cells of rodent and primate testes. Reproduction, 2018, 156, 231-238.	2.6	29
65	Matched preclinical designs for improved translatability. Science Translational Medicine, 2017, 9, .	12.4	2
66	InÂVivo Expression of miR-32 Induces Proliferation in Prostate Epithelium. American Journal of Pathology, 2017, 187, 2546-2557.	3.8	16
67	Maternal expression of the JMJD2A/KDM4A histone demethylase is critical for pre-implantation development. Development (Cambridge), 2017, 144, 3264-3277.	2.5	23
68	Ectodysplasin target gene Fgf20 regulates mammary bud growth and ductal invasion and branching during puberty. Scientific Reports, 2017, 7, 5049.	3.3	17
69	Increased adipose tissue aromatase activity improves insulin sensitivity and reduces adipose tissue inflammation in male mice. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E450-E462.	3.5	39
70	Deleting the mouse Hsd17b1 gene results in a hypomorphic Naglu allele and a phenotype mimicking a lysosomal storage disease. Scientific Reports, 2017, 7, 16406.	3.3	13
71	Stress-activated <i>miR-21/miR-21*</i> in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption. Gut, 2016, 65, 1871-1881.	12.1	114
72	From pure compounds to complex exposure: Effects of dietary cadmium and lignans on estrogen, epidermal growth factor receptor, and mitogen activated protein kinase signaling in vivo. Toxicology Letters, 2016, 253, 27-35.	0.8	6

5

#	Article	IF	CITATIONS
73	The Hydroxysteroid (17β) Dehydrogenase Family Gene HSD17B12 Is Involved in the Prostaglandin Synthesis Pathway, the Ovarian Function, and Regulation of Fertility. Endocrinology, 2016, 157, 3719-3730.	2.8	43
74	A Nanoparticle-Lectin Immunoassay Improves Discrimination of Serum CA125 from Malignant and Benign Sources. Clinical Chemistry, 2016, 62, 1390-1400.	3.2	21
75	Optimized design and analysis of preclinical intervention studies in vivo. Scientific Reports, 2016, 6, 30723.	3.3	36
76	Targeted inactivation of the mouse epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding. Molecular and Cellular Endocrinology, 2016, 427, 143-154.	3.2	28
77	Hyperprolactinemia induced by hCG leads to metabolic disturbances in female mice. Journal of Endocrinology, 2016, 230, 157-169.	2.6	18
78	Liver lipid metabolism is altered by increased circulating estrogen to androgen ratio in male mouse. Journal of Proteomics, 2016, 133, 66-75.	2.4	7
79	Fam3c modulates osteogenic cell differentiation and affects bone volume and cortical bone mineral density. BoneKEy Reports, 2016, 5, 787.	2.7	16
80	The bone-sparing effects of estrogen and WNT16 are independent of each other. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14972-14977.	7.1	50
81	Direct Comparison of a Natural Loss-Of-Function Single Nucleotide Polymorphism with a Targeted Deletion in the Ncf1 Gene Reveals Different Phenotypes. PLoS ONE, 2015, 10, e0141974.	2.5	15
82	HSD17B1 expression enhances estrogen signaling stimulated by the low active estrone, evidenced by an estrogen responsive element-driven reporter gene in vivo. Chemico-Biological Interactions, 2015, 234, 126-134.	4.0	12
83	Measurement of a Comprehensive Sex Steroid Profile in Rodent Serum by High-Sensitive Gas Chromatography-Tandem Mass Spectrometry. Endocrinology, 2015, 156, 2492-2502.	2.8	246
84	Imbalanced lipid homeostasis in the conditional Dicer1 knockout mouse epididymis causes instability of the sperm membrane. FASEB Journal, 2015, 29, 433-442.	0.5	45
85	Hydroxysteroid (17β)-dehydrogenase 1–deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production. FASEB Journal, 2015, 29, 3806-3816.	0.5	40
86	Autocrine Action of IGF2 Regulates Adult \hat{l}^2 -Cell Mass and Function. Diabetes, 2015, 64, 4148-4157.	0.6	46
87	Optimization of Statistical Methods Impact on Quantitative Proteomics Data. Journal of Proteome Research, 2015, 14, 4118-4126.	3.7	54
88	Abstract 3061: In vivo role of miR-32 in prostate cancer. , 2015, , .		0
89	Human Testicular Peritubular Cells Host Putative Stem Leydig Cells With Steroidogenic Capacity. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1227-E1235.	3.6	48
90	Intra-Tissue Steroid Profiling Indicates Differential Progesterone and Testosterone Metabolism in the Endometrium and Endometriosis Lesions. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2188-E2197.	3.6	55

#	Article	IF	CITATIONS
91	ErbB4, a Receptor Tyrosine Kinase, Coordinates Organization of the Seminiferous Tubules in the Developing Testis. Molecular Endocrinology, 2014, 28, 1534-1546.	3.7	8
92	Elevated hypothalamic aromatization at the onset of precocious puberty in transgenic female mice hypersecreting human chorionic gonadotropin: Effect of androgens. Molecular and Cellular Endocrinology, 2014, 390, 102-111.	3.2	6
93	Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nature Medicine, 2014, 20, 1279-1288.	30.7	303
94	Ovarian Endometriosis Signatures Established through Discovery and Directed Mass Spectrometry Analysis. Journal of Proteome Research, 2014, 13, 4983-4994.	3.7	17
95	Castration Induces Up-Regulation of Intratumoral Androgen Biosynthesis and Androgen Receptor Expression in an Orthotopic VCaP Human Prostate Cancer Xenograft Model. American Journal of Pathology, 2014, 184, 2163-2173.	3.8	53
96	Abstract LB-31: Castration induces upregulation of intratumoral androgen biosynthesis and androgen receptor expression in orthotopic VCaP human prostate cancer xenograft model. , 2014, , .		0
97	Inactivation of estrogen receptor α in boneâ€forming cells induces bone loss in female mice. FASEB Journal, 2013, 27, 478-488.	0.5	74
98	The transcriptional co-factor RIP140 regulates mammary gland development by promoting the generation of key mitogenic signals. Development (Cambridge), 2013, 140, 1079-1089.	2.5	44
99	FELASA guidelines for the refinement of methods for genotyping genetically-modified rodents. Laboratory Animals, 2013, 47, 134-145.	1.0	32
100	Seminal vesicles and urinary bladder as sites of aromatization of androgens in men, evidenced by a CYP19A1â€driven luciferase reporter mouse and human tissue specimens. FASEB Journal, 2013, 27, 1342-1350.	0.5	7
101	Inactivation of the androgen receptor in bone-forming cells leads to trabecular bone loss in adult female mice. BoneKEy Reports, 2013, 2, 440.	2.7	28
102	LCâ€MS analysis of estradiol in human serum and endometrial tissue: Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization. Journal of Mass Spectrometry, 2013, 48, 1050-1058.	1.6	43
103	Abstract 1402: A reporter mouse model reveals that human CYP19A1 (aromatase) gene expression is induced in breast cancer xenograft stroma and surrounding mammary gland by the cancer cells in vivo , 2013, , .		0
104	Understanding the diversity of sex steroid action. Journal of Endocrinology, 2012, 212, 1-2.	2.6	6
105	Fibroblast Growth Factor 8b Causes Progressive Stromal and Epithelial Changes in the Epididymis and Degeneration of the Seminiferous Epithelium in the Testis of Transgenic Mice1. Biology of Reproduction, 2012, 86, 157, 1-12.	2.7	7
106	Loss of Cysteine-Rich Secretory Protein 4 (Crisp4) Leads to Deficiency in Sperm-Zona Pellucida Interaction in Mice1. Biology of Reproduction, 2012, 86, 1-8.	2.7	37
107	Short-Term Pharmacological Suppression of the Hyperprolactinemia of Infertile hCG-Overproducing Female Mice Persistently Restores Their Fertility. Endocrinology, 2012, 153, 5980-5992.	2.8	17
108	Epididymal protein Rnase10 is required for postâ€ŧesticular sperm maturation and male fertility. FASEB Journal, 2012, 26, 4198-4209.	0.5	53

#	Article	IF	CITATIONS
109	The diversity of sex steroid action: novel functions of hydroxysteroid (17β) dehydrogenases as revealed by genetically modified mouse models. Journal of Endocrinology, 2012, 212, 27-40.	2.6	83
110	Improved Statistical Modeling of Tumor Growth and Treatment Effect in Preclinical Animal Studies with Highly Heterogeneous Responses <i>In Vivo</i> . Clinical Cancer Research, 2012, 18, 4385-4396.	7.0	35
111	Loss of Bmyc results in increased apoptosis associated with upregulation of Myc expression in juvenile murine testis. Reproduction, 2012, 144, 495-503.	2.6	8
112	Conditional model to study the tissue- and time specific effects of nadph oxidase 2 -derived reactive oxygen species during arthritis. Annals of the Rheumatic Diseases, 2012, 71, A83.3-A84.	0.9	0
113	Comparison of liquid chromatography-microchip/mass spectrometry to conventional liquid chromatography–mass spectrometry for the analysis of steroids. Analytica Chimica Acta, 2012, 721, 115-121.	5.4	17
114	Interactions between inflammatory signals and the progesterone receptor in regulating gene expression in pregnant human uterine myocytes. Journal of Cellular and Molecular Medicine, 2012, 16, 2487-2503.	3.6	33
115	Endometrial and Endometriotic Concentrations of Estrone and Estradiol Are Determined by Local Metabolism Rather than Circulating Levels. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 4228-4235.	3.6	145
116	Estrogen biosynthesis and signaling in endometriosis. Molecular and Cellular Endocrinology, 2012, 358, 146-154.	3.2	88
117	Dicer1 Ablation in the Mouse Epididymis Causes Dedifferentiation of the Epithelium and Imbalance in Sex Steroid Signaling. PLoS ONE, 2012, 7, e38457.	2.5	71
118	Regional Expression of Androgen Receptor Coregulators and Androgen Action in the Mouse Epididymis. Journal of Andrology, 2011, 32, 711-717.	2.0	15
119	ERβ1 Represses FOXM1 Expression through Targeting ERα to Control Cell Proliferation in Breast Cancer. American Journal of Pathology, 2011, 179, 1148-1156.	3.8	31
120	Endogenously elevated androgens alter the developmental programming of the hypothalamic–pituitary axis in male mice. Molecular and Cellular Endocrinology, 2011, 332, 78-87.	3.2	15
121	Fast and sensitive liquid chromatography–mass spectrometry assay for seven androgenic and progestagenic steroids in human serum. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 396-404.	2.5	105
122	Members of the murine Pate family are predominantly expressed in the epididymis in a segment-specific fashion and regulated by androgens and other testicular factors. Reproductive Biology and Endocrinology, 2011, 9, 128.	3.3	16
123	Down-Regulation of the Histone Methyltransferase EZH2 Contributes to the Epigenetic Programming of Decidualizing Human Endometrial Stromal Cells. Molecular Endocrinology, 2011, 25, 1892-1903.	3.7	82
124	A Single Dose of Enterolactone Activates Estrogen Signaling and Regulates Expression of Circadian Clock Genes in Mice. Journal of Nutrition, 2011, 141, 1583-1589.	2.9	33
125	Targeted Inactivation of the Androgen Receptor Gene in Murine Proximal Epididymis Causes Epithelial Hypotrophy and Obstructive Azoospermia. Endocrinology, 2011, 152, 689-696.	2.8	69
126	Inactivation of Palb2 gene leads to mesoderm differentiation defect and early embryonic lethality in mice. Human Molecular Genetics, 2010, 19, 3021-3029.	2.9	41

#	Article	IF	CITATIONS
127	Elevated expression of the metabolic regulator receptor-interacting protein 140 results in cardiac hypertrophy and impaired cardiac function. Cardiovascular Research, 2010, 86, 443-451.	3.8	38
128	Hydroxysteroid (17β) Dehydrogenase 7 Activity Is Essential for Fetal de Novo Cholesterol Synthesis and for Neuroectodermal Survival and Cardiovascular Differentiation in Early Mouse Embryos. Endocrinology, 2010, 151, 1884-1892.	2.8	38
129	Inhibition of oocyte growth factors in vivo modulates ovarian folliculogenesis in neonatal and immature mice. Reproduction, 2010, 139, 587-598.	2.6	16
130	Hydroxysteroid (17β) Dehydrogenase 12 Is Essential for Mouse Organogenesis and Embryonic Survival. Endocrinology, 2010, 151, 1893-1901.	2.8	52
131	Female Mice Expressing Constitutively Active Mutants of FSH Receptor Present with a Phenotype of Premature Follicle Depletion and Estrogen Excess. Endocrinology, 2010, 151, 1872-1883.	2.8	44
132	Stromal Activation Associated with Development of Prostate Cancer in Prostate-Targeted Fibroblast Growth Factor 8b Transgenic Mice. Neoplasia, 2010, 12, 915-IN19.	5.3	28
133	Novel Hydroxysteroid (17β) Dehydrogenase 1 Inhibitors Reverse Estrogen-Induced Endometrial Hyperplasia in Transgenic Mice. American Journal of Pathology, 2010, 176, 1443-1451.	3.8	37
134	Resampling Reveals Sample-Level Differential Expression in Clinical Genome-Wide Studies. OMICS A Journal of Integrative Biology, 2009, 13, 381-396.	2.0	10
135	Increased Exposure to Estrogens Disturbs Maturation, Steroidogenesis, and Cholesterol Homeostasis via Estrogen Receptor α in Adult Mouse Leydig Cells. Endocrinology, 2009, 150, 2865-2872.	2.8	64
136	Sex Steroid-Dependent and -Independent Action of Hydroxysteroid (17β) Dehydrogenase 2: Evidence from Transgenic Female Mice. Endocrinology, 2009, 150, 4941-4949.	2.8	9
137	Elevated Aromatase Expression in Osteoblasts Leads to Increased Bone Mass Without Systemic Adverse Effects. Journal of Bone and Mineral Research, 2009, 24, 1263-1270.	2.8	41
138	Epithelial cells are the major site of hydroxysteroid (17β) dehydrogenase 2 and androgen receptor expression in fetal mouse lungs during the period overlapping the surge of surfactant. Journal of Steroid Biochemistry and Molecular Biology, 2009, 117, 139-145.	2.5	24
139	In vivo mouse model for analysis of hydroxysteroid (17β) dehydrogenase 1 inhibitors. Molecular and Cellular Endocrinology, 2009, 301, 158-162.	3.2	13
140	Human HSD17B1 expression masculinizes transgenic female mice. Molecular and Cellular Endocrinology, 2009, 301, 163-168.	3.2	25
141	Response to Dr. Katzaki. Molecular and Cellular Endocrinology, 2009, 313, 71-71.	3.2	Ο
142	Increased Endogenous Estrogen Synthesis Leads to the Sequential Induction of Prostatic Inflammation (Prostatitis) and Prostatic Pre-Malignancy. American Journal of Pathology, 2009, 175, 1187-1199.	3.8	72
143	Overexpression of Human Hydroxysteroid (17β) Dehydrogenase 2 Induces Disturbance in Skeletal Development in Young Male Mice. Journal of Bone and Mineral Research, 2008, 23, 1217-1226.	2.8	13
144	The Androgen and Progesterone Receptors Regulate Distinct Gene Networks and Cellular Functions in Decidualizing Endometrium. Endocrinology, 2008, 149, 4462-4474.	2.8	140

#	Article	IF	CITATIONS
145	Placenta Defects and Embryonic Lethality Resulting from Disruption of Mouse Hydroxysteroid (17-β) Dehydrogenase 2 Gene. Molecular Endocrinology, 2008, 22, 665-675.	3.7	27
146	Transgenic Male Mice Expressing Human Hydroxysteroid Dehydrogenase 2 Indicate a Role for the Enzyme Independent of Its Action on Sex Steroids. Endocrinology, 2007, 148, 3827-3836.	2.8	20
147	Bfk, a Novel Member of the Bcl2 Gene Family, Is Highly Expressed in Principal Cells of the Mouse Epididymis and Demonstrates a Predominant Nuclear Localization. Endocrinology, 2007, 148, 3196-3204.	2.8	13
148	Human Chorionic Gonadotropin (hCG) Up-Regulates wnt5b and wnt7b in the Mammary Gland, and hCGβ Transgenic Female Mice Present with Mammary Gland Tumors Exhibiting Characteristics of the Wnt/l²-Catenin Pathway Activation. Endocrinology, 2007, 148, 3694-3703.	2.8	28
149	Activation of Androgens by Hydroxysteroid (17β) Dehydrogenase 1 in Vivo as a Cause of Prenatal Masculinization and Ovarian Benign Serous Cystadenomas. Molecular Endocrinology, 2007, 21, 2627-2636.	3.7	24
150	The Transcriptional Corepressor RIP140 Regulates Oxidative Metabolism in Skeletal Muscle. Cell Metabolism, 2007, 6, 236-245.	16.2	174
151	Phenotypic characterisation of mice with exaggerated and missing LH/hCG action. Molecular and Cellular Endocrinology, 2007, 260-262, 255-263.	3.2	17
152	Extragonadal LH/hCG action—Not yet time to rewrite textbooks. Molecular and Cellular Endocrinology, 2007, 269, 9-16.	3.2	50
153	Delay of Postnatal Maturation Sensitizes the Mouse Prostate to Testosterone-Induced Pronounced Hyperplasia. American Journal of Pathology, 2007, 171, 1013-1022.	3.8	13
154	Male pheromone–stimulated neurogenesis in the adult female brain: possible role in mating behavior Nature Neuroscience, 2007, 10, 1003-1011.	14.8	284
155	Novel epididymal protease inhibitors with Kazal or WAP family domain. Biochemical and Biophysical Research Communications, 2006, 349, 245-254.	2.1	41
156	Identification of novel epididymal genes by expression profiling and in silico gene discovery. Molecular and Cellular Endocrinology, 2006, 250, 163-168.	3.2	5
157	Genetically modified mouse models in studies of luteinising hormone action. Molecular and Cellular Endocrinology, 2006, 252, 126-135.	3.2	35
158	Transgenic Mice Expressing P450 Aromatase as a Model for Male Infertility Associated with Chronic Inflammation in the Testis. Endocrinology, 2006, 147, 1271-1277.	2.8	69
159	Toward Understanding the Endocrine Regulation of Gonadal Somatic Cells. Endocrinology, 2006, 147, 3662-3665.	2.8	1
160	Human Hydroxysteroid (17-β) Dehydrogenase 1 Expression Enhances Estrogen Sensitivity of MCF-7 Breast Cancer Cell Xenografts. Endocrinology, 2006, 147, 5333-5339.	2.8	56
161	Angiogenic activity of human chorionic gonadotropin through LH receptor activation on endothelial and epithelial cells of the endometrium. FASEB Journal, 2006, 20, 2630-2632.	0.5	144
162	Differential Endocrine Regulation of Genes Enriched in Initial Segment and Distal Caput of the Mouse Epididymis as Revealed by Genome-Wide Expression Profiling1. Biology of Reproduction, 2006, 75, 240-251.	2.7	37

#	Article	IF	CITATIONS
163	Fetal but not adult Leydig cells are susceptible to adenoma formation in response to persistently high hCG level: a study on hCG overexpressing transgenic mice. Oncogene, 2005, 24, 7301-7309.	5.9	45
164	Discovery and characterization of new epididymis-specific beta-defensins in mice. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1730, 22-30.	2.4	28
165	Testosterone Replacement Therapy Induces Spermatogenesis and Partially Restores Fertility in Luteinizing Hormone Receptor Knockout Mice. Endocrinology, 2005, 146, 596-606.	2.8	104
166	Mouse Cysteine-Rich Secretory Protein 4 (CRISP4): A Member of the Crisp Family Exclusively Expressed in the Epididymis in an Androgen-Dependent Manner1. Biology of Reproduction, 2005, 72, 1268-1274.	2.7	74
167	Knockout of Luteinizing Hormone Receptor Abolishes the Effects of Follicle-Stimulating Hormone on Preovulatory Maturation and Ovulation of Mouse Graafian Follicles. Molecular Endocrinology, 2005, 19, 2591-2602.	3.7	68
168	Multiple sites of tumorigenesis in transgenic mice overproducing hCG. Molecular and Cellular Endocrinology, 2005, 234, 117-126.	3.2	35
169	Fertility in luteinizing hormone receptor-knockout mice after wild-type ovary transplantation demonstrates redundancy of extragonadal luteinizing hormone action. Journal of Clinical Investigation, 2005, 115, 1862-1868.	8.2	37
170	Immortalization of Epididymal Epithelium in Transgenic Mice Expressing Simian Virus 40 T Antigen: Characterization of Cell Lines and Regulation of the Polyoma Enhancer Activator 3. Endocrinology, 2004, 145, 437-446.	2.8	30
171	Bmx Tyrosine Kinase Transgene Induces Skin Hyperplasia, Inflammatory Angiogenesis, and Accelerated Wound Healing. Molecular Biology of the Cell, 2004, 15, 4226-4233.	2.1	32
172	Indirect Sertoli Cell-Mediated Ablation of Germ Cells in Mice Expressing the Inhibin-α Promoter/Herpes Simplex Virus Thymidine Kinase Transgene1. Biology of Reproduction, 2004, 71, 1545-1550.	2.7	14
173	Skeletal Changes in Transgenic Male Mice Expressing Human Cytochrome P450 Aromatase. Journal of Bone and Mineral Research, 2004, 19, 1320-1328.	2.8	19
174	Molecular Characterization of Postnatal Development of Testicular Steroidogenesis in Luteinizing Hormone Receptor Knockout Mice. Endocrinology, 2004, 145, 1453-1463.	2.8	116
175	Multiple Structural and Functional Abnormalities in the P450 Aromatase Expressing Transgenic Male Mice Are Ameliorated by a P450 Aromatase Inhibitor. American Journal of Pathology, 2004, 164, 1039-1048.	3.8	41
176	Epididymis-specific promoter-driven gene targeting: a new approach to control epididymal function?. Molecular and Cellular Endocrinology, 2004, 216, 15-22.	3.2	4
177	Immortalization by large T-antigen of the adult epididymal duct epithelium. Molecular and Cellular Endocrinology, 2004, 216, 83-94.	3.2	28
178	Mouse models of infertility due to swollen spermatozoa. Molecular and Cellular Endocrinology, 2004, 216, 55-63.	3.2	54
179	High levels of luteinizing hormone analog stimulate gonadal and adrenal tumorigenesis in mice transgenic for the mouse inhibin-α-subunit promoter/Simian virus 40 T-antigen fusion gene. Oncogene, 2003, 22, 3269-3278.	5.9	39
180	Discovery in Silico and Characterization in Vitro of Novel Genes Exclusively Expressed in the Mouse Epididymis. Molecular Endocrinology, 2003, 17, 2138-2151.	3.7	59

#	Article	IF	CITATIONS
181	Female mice carrying a ubiquitin promoter-Insl3 transgene have descended ovaries and inguinal hernias but normal fertility. Molecular and Cellular Endocrinology, 2003, 206, 159-166.	3.2	41
182	Phenotype characteristics of transgenic male mice expressing human aromatase under ubiquitin C promoter. Journal of Steroid Biochemistry and Molecular Biology, 2003, 86, 469-476.	2.5	31
183	Adenosine Triphosphate Induces Ca2+ Signal in Epithelial Cells of the Mouse Caput Epididymis Through Activation of P2X and P2Y Purinergic Receptors1. Biology of Reproduction, 2003, 68, 1185-1192.	2.7	21
184	The low gonadotropin-independent constitutive production of testicular testosterone is sufficient to maintain spermatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13692-13697.	7.1	119
185	Overexpression of Bcl-w in the Testis Disrupts Spermatogenesis: Revelation of a Role of BCL-W in Male Germ Cell Cycle Control. Molecular Endocrinology, 2003, 17, 1868-1879.	3.7	31
186	Elevated Steroidogenesis, Defective Reproductive Organs, and Infertility in Transgenic Male Mice Overexpressing Human Chorionic Gonadotropin. Endocrinology, 2003, 144, 4980-4990.	2.8	75
187	Obesity in transgenic female mice with constitutively elevated luteinizing hormone secretion. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E812-E818.	3.5	23
188	Sperm Volume Regulation: Maturational Changes in Fertile and Infertile Transgenic Mice and Association with Kinematics and Tail Angulation1. Biology of Reproduction, 2002, 67, 269-275.	2.7	74
189	Transgenic Mice Harboring Murine Luteinizing Hormone Receptor Promoter/β-Galactosidase Fusion Genes: Different Structural and Hormonal Requirements of Expression in the Testis, Ovary, and Adrenal Gland. Endocrinology, 2002, 143, 4096-4103.	2.8	8
190	Epididymal Dysfunction Initiated by the Expression of Simian Virus 40 T-Antigen Leads to Angulated Sperm Flagella and Infertility in Transgenic Mice. Molecular Endocrinology, 2002, 16, 2603-2617.	3.7	50
191	Mammary Gland Development in Transgenic Male Mice Expressing Human P450 Aromatase. Endocrinology, 2002, 143, 4074-4083.	2.8	39
192	Reproductive Disturbances, Pituitary Lactotrope Adenomas, and Mammary Gland Tumors in Transgenic Female Mice Producing High Levels of Human Chorionic Gonadotropin. Endocrinology, 2002, 143, 4084-4095.	2.8	109
193	A fluorescent Tie1 reporter allows monitoring of vascular development and endothelial cell isolation from transgenic mouse embryos. FASEB Journal, 2002, 16, 1764-1774.	0.5	49
194	Infravesical Obstruction in Aromatase Over Expressing Transgenic Male Mice With Increased Ratio of Serum Estrogen-To-Androgen Concentration. Journal of Urology, 2002, 168, 298-302.	0.4	18
195	Transgenic and knockout mouse models for the study of luteinizing hormone and luteinizing hormone receptor function. Molecular and Cellular Endocrinology, 2002, 187, 49-56.	3.2	37
196	Developmental, Estrogen Induced Infravesical Obstruction is Reversible in Adult Male Rodents. Journal of Urology, 2002, 168, 2263-2268.	0.4	10
197	Murine Relaxin-Like Factor Promoter: Functional Characterization and Regulation by Transcription Factors Steroidogenic Factor 1 and DAX-1. Endocrinology, 2002, 143, 909-919.	2.8	20
198	Infravesical obstruction in aromatase over expressing transgenic male mice with increased ratio of serum estrogen-to-androgen concentration. Journal of Urology, 2002, 168, 298-302.	0.4	10

#	Article	IF	CITATIONS
199	Normal Prenatal but Arrested Postnatal Sexual Development of Luteinizing Hormone Receptor Knockout (LuRKO) Mice. Molecular Endocrinology, 2001, 15, 172-183.	3.7	476
200	Improved Technique for Detection of Enhanced Green Fluorescent Protein in Transgenic Mice. BioTechniques, 2001, 30, 1282-1285.	1.8	16
201	Structure of the 5′ region of the Hst70 gene transcription unit: presence of an intron and multiple transcription initiation sites. Biochemical Journal, 2001, 359, 129.	3.7	7
202	Structure of the 5′ region of the Hst70 gene transcription unit: presence of an intron and multiple transcription initiation sites. Biochemical Journal, 2001, 359, 129-137.	3.7	7
203	Evaluation of the 5′-Flanking Regions of Murine Glutathione Peroxidase Five and Cysteine-Rich Secretory Protein-1 Genes for Directing Transgene Expression in Mouse Epididymis1. Biology of Reproduction, 2001, 64, 1115-1121.	2.7	21
204	Promoter Function of Different Lengths of the Murine Luteinizing Hormone Receptor Gene 5′-Flanking Region in Transfected Gonadal Cells and in Transgenic Mice1. Endocrinology, 2001, 142, 2427-2434.	2.8	22
205	A Novel Transgenic Model to Characterize the Specific Effects of Follicle-Stimulating Hormone on Gonadal Physiology in the Absence of Luteinizing Hormone Actions*. Endocrinology, 2001, 142, 2213-2220.	2.8	73
206	Altered Structure and Function of Reproductive Organs in Transgenic Male Mice Overexpressing Human Aromatase*. Endocrinology, 2001, 142, 2435-2442.	2.8	149
207	Promoter Function of Different Lengths of the Murine Luteinizing Hormone Receptor Gene 5'-Flanking Region in Transfected Gonadal Cells and in Transgenic Mice. Endocrinology, 2001, 142, 2427-2434.	2.8	8
208	Altered Structure and Function of Reproductive Organs in Transgenic Male Mice Overexpressing Human Aromatase. Endocrinology, 2001, 142, 2435-2442.	2.8	48
209	Activin-A, but not inhibin, regulates 17β-hydroxysteroid dehydrogenase type 1 activity and expression in cultured rat granulosa cells. Journal of Steroid Biochemistry and Molecular Biology, 2000, 73, 203-210.	2.5	13
210	Elevated luteinizing hormone induces expression of its receptor and promotes steroidogenesis in the adrenal cortex. Journal of Clinical Investigation, 2000, 105, 633-641.	8.2	140
211	A Common Polymorphism in the Human Relaxin-Like Factor (RLF) Gene: No Relationship with Cryptorchidism. Pediatric Research, 2000, 47, 538-541.	2.3	66
212	Age- and Sex-Specific Promoter Function of a 2-Kilobase 5′-Flanking Sequence of the Murine Luteinizing Hormone Receptor Gene in Transgenic Mice1. Endocrinology, 1999, 140, 5322-5329.	2.8	31
213	17βâ€hydroxysteroid dehydrogenases in normal human mammary epithelial cells and breast tissue. Breast Cancer Research and Treatment, 1999, 57, 175-182.	2.5	58
214	Age- and Sex-Specific Promoter Function of a 2-Kilobase 5'-Flanking Sequence of the Murine Luteinizing Hormone Receptor Gene in Transgenic Mice. Endocrinology, 1999, 140, 5322-5329.	2.8	9
215	Characterization of rat 17β-hydroxysteroid dehydrogenase type 1 gene and mRNA transcripts. Gene, 1998, 208, 229-238.	2.2	13
216	17β-Hydroxysteroid Dehydrogenase Type 1 in Normal Breast Tissue during the Menstrual Cycle and Hormonal Contraception1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 1190-1193.	3.6	15

Matti Poutanen

#	Article	IF	CITATIONS
217	Expression of 17β-Hydroxysteroid Dehydrogenase Type 1 and Type 2, P450 Aromatase, and 20α-Hydroxysteroid Dehydrogenase Enzymes in Immature, Mature, and Pregnant Rats*. Endocrinology, 1997, 138, 2886-2892.	2.8	57
218	Characterization of Structural and Functional Properties of Human 17β-Hydroxysteroid Dehydrogenase Type 1 Using Recombinant Enzymes and Site-Directed Mutagenesis. Molecular Endocrinology, 1997, 11, 77-86.	3.7	53
219	Origin of Substrate Specificity of Human and Rat 17β-Hydroxysteroid Dehydrogenase Type 1, Using Chimeric Enzymes and Site-Directed Substitutions*. Endocrinology, 1997, 138, 3532-3539.	2.8	61
220	Ontogeny of 17β-hydroxysteroid dehydrogenase type 2 mRNA expression in the developing mouse placenta and fetus. Molecular and Cellular Endocrinology, 1997, 134, 33-40.	3.2	26
221	Growth factors and phorbol-12-myristate-13-acetate modulate the follicle-stimulating hormone- and cyclic adenosine-3′,5′-monophosphate-dependent regulation of 17β-hydroxysteroid dehydrogenase type 1 expression in rat granulosa cells. Molecular and Cellular Endocrinology, 1997, 136, 47-56.	3.2	13
222	Expression of 17Â-Hydroxysteroid Dehydrogenase Type 1 and Type 2, P450 Aromatase, and 20Â-Hydroxysteroid Dehydrogenase Enzymes in Immature, Mature, and Pregnant Rats. Endocrinology, 1997, 138, 2886-2892.	2.8	21
223	Origin of Substrate Specificity of Human and Rat 17Â-Hydroxysteroid Dehydrogenase Type 1, Using Chimeric Enzymes and Site-Directed Substitutions. Endocrinology, 1997, 138, 3532-3539.	2.8	26
224	Characterization of 17Î'-hydroxysteroid dehydrogenase isoenzyme expression in benign and malignant human prostate. , 1996, 66, 37-41.		61
225	Regulation of Oestrogen Action: Role of 17β-hydroxysteroid Dehydrogenases. Annals of Medicine, 1995, 27, 675-682.	3.8	26
226	Role of 17β-hydroxysteroid dehydrogenase type 1 in endocrine and intracrine estradiol biosynthesis. Journal of Steroid Biochemistry and Molecular Biology, 1995, 55, 525-532.	2.5	97
227	Human familial and sporadic breast cancer: analysis of the coding regions of the 17?-hydroxysteroid dehydrogenase 2 gene (EDH17B2) using a single-strand conformation polymorphism assay. Human Genetics, 1994, 93, 319-324.	3.8	56
228	A Point Mutation in the Putative TATA Box, Detected in Nondiseased Individuals and Patients with Hereditary Breast Cancer, Decreases Promoter Activity of the 17β-Hydroxysteroid Dehydrogenase Type 1 Gene 2 (EDH17B2) in Vitro. Genomics, 1994, 23, 250-252.	2.9	34