
T John Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6679722/publications.pdf Version: 2024-02-01

ΤΙΟΗΝ ΜΑΡΤΙΝ

#	Article	IF	CITATIONS
1	Multiple actions of parathyroid hormoneâ€related protein in breast cancer bone metastasis. British Journal of Pharmacology, 2021, 178, 1923-1935.	5.4	36
2	Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocrine Reviews, 2021, 42, 383-406.	20.1	41
3	Bone Geometry Is Altered by Follistatinâ€Induced Muscle Growth in Young Adult Male Mice. JBMR Plus, 2021, 5, e10477.	2.7	6
4	Aspects of intercellular communication in bone and implications in therapy. Bone, 2021, 153, 116148.	2.9	2
5	PTH1R Actions on Bone Using the cAMP/Protein Kinase A Pathway. Frontiers in Endocrinology, 2021, 12, 833221.	3.5	8
6	Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annual Review of Physiology, 2020, 82, 507-529.	13.1	154
7	The osteoblast lineage. , 2020, , 89-110.		5
8	Coupling of bone formation and resorption. , 2020, , 219-243.		4
9	Paracrine parathyroid hormone–related protein in bone: physiology and pharmacology. , 2020, , 595-621.		3
10	<i>Dmp1Cre-</i> directed knockdown of parathyroid hormone–related protein (PTHrP) in murine decidua is associated with a life-long increase in bone mass, width, and strength in male progeny. Journal of Bone and Mineral Research, 2020, 36, 1999-2016.	2.8	4
11	Remembering Dr John D Termine. Journal of Bone and Mineral Research, 2020, 36, 1647-1648.	2.8	Ο
12	Cortical bone maturation in mice requires SOCS3 suppression of gp130/STAT3 signalling in osteocytes. ELife, 2020, 9, .	6.0	21
13	Increased autophagy in EphrinB2-deficient osteocytes is associated with elevated secondary mineralization and brittle bone. Nature Communications, 2019, 10, 3436.	12.8	48
14	Brief exposure to full length parathyroid hormone-related protein (PTHrP) causes persistent generation of cyclic AMP through an endocytosis-dependent mechanism. Biochemical Pharmacology, 2019, 169, 113627.	4.4	9
15	Autocrine and Paracrine Regulation of the Murine Skeleton by Osteocyte-Derived Parathyroid Hormone-Related Protein. Journal of Bone and Mineral Research, 2018, 33, 137-153.	2.8	54
16	Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53. Cell Death and Disease, 2018, 9, 844.	6.3	12
17	Integrating Endocrine and Paracrine Influences on Bone; Lessons From Parathyroid Hormone and Parathyroid Hormone-Related Protein. , 2018, , 283-299.		0
18	Parathyroid Hormone-Related Protein Negatively Regulates Tumor Cell Dormancy Genes in a PTHR1/Cyclic AMP-Independent Manner. Frontiers in Endocrinology, 2018, 9, 241.	3.5	25

#	Article	IF	CITATIONS
19	Abaloparatide Is an Anabolic, but Does It Spare Resorption?. Journal of Bone and Mineral Research, 2017, 32, 11-16.	2.8	28
20	Coupling: The Influences of Immune and Bone Cells. , 2016, , 169-185.		8
21	Bone metastasis: the importance of the neighbourhood. Nature Reviews Cancer, 2016, 16, 373-386.	28.4	369
22	Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases. Physiological Reviews, 2016, 96, 831-871.	28.8	123
23	Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation. Bone, 2016, 93, 146-154.	2.9	25
24	Chondrocytic EphrinB2 promotes cartilage destruction by osteoclasts in endochondral ossification. Development (Cambridge), 2016, 143, 648-57.	2.5	25
25	The role of vitamin A and retinoic acid receptor signaling in post-natal maintenance of bone. Journal of Steroid Biochemistry and Molecular Biology, 2016, 155, 135-146.	2.5	53
26	Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. ELife, 2016, 5, .	6.0	38
27	Comment on: Wnt Signaling Inhibits Osteoclast Differentiation by Activating Canonical and Non-Canonical cAMP/PKA Pathways. Journal of Bone and Mineral Research, 2015, 30, 2133-2134.	2.8	1
28	Coupling Signals between the Osteoclast and Osteoblast: How are Messages Transmitted between These Temporary Visitors to the Bone Surface?. Frontiers in Endocrinology, 2015, 6, 41.	3.5	140
29	RANKL/OPG; Critical role in bone physiology. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 131-139.	5.7	158
30	Wnt inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma. Bone, 2015, 73, 223-232.	2.9	27
31	The DNA Helicase Recql4 Is Required for Normal Osteoblast Expansion and Osteosarcoma Formation. PLoS Genetics, 2015, 11, e1005160.	3.5	34
32	RAR ^{ĵ3} is a negative regulator of osteoclastogenesis. Journal of Steroid Biochemistry and Molecular Biology, 2015, 150, 46-53.	2.5	25
33	Calcitonin Physiology, Saved by a Lysophospholipid. Journal of Bone and Mineral Research, 2015, 30, 212-215.	2.8	19
34	Glycoprotein130 (Gp130)/interleukin-6 (IL-6) signalling in osteoclasts promotes bone formation in periosteal and trabecular bone. Bone, 2015, 81, 343-351.	2.9	47
35	Isolation and gene expression of haematopoietic-cell-free preparations of highly purified murine osteocytes. Bone, 2015, 72, 34-42.	2.9	42
36	Bone Biology and Anabolic Therapies for Bone: Current Status and Future Prospects. Journal of Bone Metabolism, 2014, 21, 8.	1.3	63

#	Article	IF	CITATIONS
37	gp130 in late osteoblasts and osteocytes is required for PTH-induced osteoblast differentiation. Journal of Endocrinology, 2014, 223, 181-190.	2.6	26
38	PTHrP, its receptor, and protein kinase A activation in osteosarcoma. Molecular and Cellular Oncology, 2014, 1, e965624.	0.7	11
39	Coupling Factors: How Many Candidates Can There Be?. Journal of Bone and Mineral Research, 2014, 29, 1519-1521.	2.8	12
40	Myokines (muscle-derived cytokines and chemokines) including ciliary neurotrophic factor (CNTF) inhibit osteoblast differentiation. Bone, 2014, 64, 47-56.	2.9	53
41	Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. BoneKEy Reports, 2014, 3, 481.	2.7	536
42	Oncostatin M acting via OSMR, augments the actions of IL-1 and TNF in synovial fibroblasts. Cytokine, 2014, 68, 101-109.	3.2	38
43	New therapeutics for osteoporosis. Current Opinion in Pharmacology, 2014, 16, 58-63.	3.5	26
44	The Primary Function of gp130 Signaling in Osteoblasts Is To Maintain Bone Formation and Strength, Rather Than Promote Osteoclast Formation. Journal of Bone and Mineral Research, 2014, 29, 1492-1505.	2.8	90
45	EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis. FASEB Journal, 2014, 28, 4482-4496.	0.5	70
46	Historical Perspective and Evolutionary Origins of Parathyroid Hormone-Related Protein. Clinical Reviews in Bone and Mineral Metabolism, 2014, 12, 104-118.	0.8	1
47	Decline in calcitonin receptor expression in osteocytes with age. Journal of Endocrinology, 2014, 221, 181-191.	2.6	20
48	Osteoclast-Derived Coupling Factors in Bone Remodeling. Calcified Tissue International, 2014, 94, 88-97.	3.1	120
49	Reflections on Development of Concepts of Intercellular Communication in Bone. , 2013, , 51-69.		0
50	Basic Principles of Bone Cell Biology. , 2013, , 5-26.		3
51	Modeling distinct osteosarcoma subtypes in vivo using Cre:lox and lineage-restricted transgenic shRNA. Bone, 2013, 55, 166-178.	2.9	65
52	EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone. Journal of Bone and Mineral Research, 2013, 28, 912-925.	2.8	93
53	Historically significant events in the discovery of RANK/RANKL/OPG. World Journal of Orthopedics, 2013, 4, 186.	1.8	54
54	Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nature Medicine, 2012, 18, 405-412.	30.7	417

#	Article	IF	CITATIONS
55	Sustained RANKL response to parathyroid hormone in oncostatin M receptor-deficient osteoblasts converts anabolic treatment to a catabolic effect in vivo. Journal of Bone and Mineral Research, 2012, 27, 902-912.	2.8	49
56	Twenty-five years of PTHrP progress: From cancer hormone to multifunctional cytokine. Journal of Bone and Mineral Research, 2012, 27, 1231-1239.	2.8	145
57	Interactions Among Osteoblasts, Osteoclasts, and Other Cells in Bone. , 2011, , 227-267.		3
58	Advances in the biology of bone metastasis: How the skeleton affects tumor behavior. Bone, 2011, 48, 6-15.	2.9	164
59	Foreword: Skeletal Complications of Cancer. Bone, 2011, 48, 5.	2.9	1
60	Zinc Finger Protein 467 Is a Novel Regulator of Osteoblast and Adipocyte Commitment. Journal of Biological Chemistry, 2011, 286, 4186-4198.	3.4	71
61	Ciliary Neurotrophic Factor Inhibits Bone Formation and Plays a Sex-Specific Role in Bone Growth and Remodeling. Calcified Tissue International, 2010, 86, 261-270.	3.1	62
62	Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. Journal of Clinical Investigation, 2010, 120, 582-592.	8.2	245
63	Matrix Rigidity Induces Osteolytic Gene Expression of Metastatic Breast Cancer Cells. PLoS ONE, 2010, 5, e15451.	2.5	70
64	Molecular Mechanisms in Coupling of Bone Formation to Resorption. Critical Reviews in Eukaryotic Gene Expression, 2009, 19, 73-88.	0.9	142
65	Advances in the molecular pharmacology and therapeutics of bone disease and international symposium on paget's disease. IBMS BoneKEy, 2009, 6, 439-445.	0.0	0
66	New functions for old hormones: Bone as an endocrine organ. Molecular and Cellular Endocrinology, 2009, 310, 1-2.	3.2	3
67	The Chemokine Cxcl1 Is a Novel Target Gene of Parathyroid Hormone (PTH)/PTH-Related Protein in Committed Osteoblasts. Endocrinology, 2009, 150, 2244-2253.	2.8	54
68	Regulatory pathways revealing new approaches to the development of anabolic drugs for osteoporosis. Osteoporosis International, 2008, 19, 1125-1138.	3.1	39
69	EphrinB2 Regulation by PTH and PTHrP Revealed by Molecular Profiling in Differentiating Osteoblasts. Journal of Bone and Mineral Research, 2008, 23, 1170-1181.	2.8	191
70	Cardiotrophin-1 Is an Osteoclast-Derived Stimulus of Bone Formation Required for Normal Bone Remodeling. Journal of Bone and Mineral Research, 2008, 23, 2025-2032.	2.8	163
71	Bone remodelling: its local regulation and the emergence of bone fragility. Best Practice and Research in Clinical Endocrinology and Metabolism, 2008, 22, 701-722.	4.7	149
72	Model structure and control of bone remodeling: A theoretical study. Bone, 2008, 43, 249-263.	2.9	237

#	Article	IF	CITATIONS
73	Osteoclast Inhibitory Lectin, an Immune Cell Product That Is Required for Normal Bone Physiology in Vivo. Journal of Biological Chemistry, 2008, 283, 30850-30860.	3.4	28
74	Intercellular Communication during Bone Remodeling. , 2008, , 547-560.		2
75	New mechanisms and targets in the treatment of bone fragility. Clinical Science, 2007, 112, 77-91.	4.3	46
76	Human embryonic stem cells leap the barrier. Medical Journal of Australia, 2007, 187, 477-478.	1.7	0
77	Changes in Osteoblast, Chondrocyte, and Adipocyte Lineages Mediate the Bone Anabolic Actions of PTH and Small Molecule CSK-3 Inhibitor. Journal of Cellular Biochemistry, 2007, 102, 1504-1518.	2.6	56
78	A skeleton key to metabolism. Nature Medicine, 2007, 13, 1021-1023.	30.7	19
79	New agents for the treatment of osteoporosis. BoneKEy Osteovision, 2007, 4, 287-298.	0.6	2
80	Protein nutrition as therapy for a genetic disorder of bone?. Cell Metabolism, 2006, 4, 419-420.	16.2	6
81	David Valor Cohn (1926–2006). Bone, 2006, 38, 611-612.	2.9	0
82	Mechanisms Involved in Skeletal Anabolic Therapies. Annals of the New York Academy of Sciences, 2006, 1068, 458-470.	3.8	50
83	Orally Bioavailable CSK-31±/l² Dual Inhibitor Increases Markers of Cellular Differentiation In Vitro and Bone Mass In Vivo. Journal of Bone and Mineral Research, 2006, 21, 910-920.	2.8	164
84	Parathyroid Hormone–Related Protein Localization in Breast Cancers Predict Improved Prognosis. Cancer Research, 2006, 66, 2250-2256.	0.9	124
85	Interleukin-11 Receptor Signaling Is Required for Normal Bone Remodeling. Journal of Bone and Mineral Research, 2005, 20, 1093-1102.	2.8	138
86	Osteoclast-derived activity in the coupling of bone formation to resorption. Trends in Molecular Medicine, 2005, 11, 76-81.	6.7	550
87	Osteoblast-derived PTHrP is a physiological regulator of bone formation. Journal of Clinical Investigation, 2005, 115, 2322-2324.	8.2	110
88	Does bone resorption inhibition affect the anabolic response to parathyroid hormone?. Trends in Endocrinology and Metabolism, 2004, 15, 49-50.	7.1	40
89	Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. Journal of Clinical Investigation, 2004, 113, 379-389.	8.2	175
90	T-Cells Mediate an Inhibitory Effect of Interleukin-4 on Osteoclastogenesis. Journal of Bone and Mineral Research, 2003, 18, 984-993.	2.8	56

#	Article	IF	CITATIONS
91	Differentiation potential of a mouse bone marrow stromal cell line. Journal of Cellular Biochemistry, 2003, 90, 158-169.	2.6	75
92	Nuclear Transport of Parathyroid Hormone (PTH)-Related Protein Is Dependent on Microtubules. Molecular Endocrinology, 2002, 16, 390-401.	3.7	104
93	Manipulating the environment of cancer cells in bone: a novel therapeutic approach. Journal of Clinical Investigation, 2002, 110, 1399-1401.	8.2	15
94	Transforming Growth Factor β Affects Osteoclast Differentiation via Direct and Indirect Actions. Journal of Bone and Mineral Research, 2001, 16, 1787-1794.	2.8	245
95	Catabolic Effects of Continuous Human PTH (1–38) in Vivo Is Associated with Sustained Stimulation of RANKL and Inhibition of Osteoprotegerin and Gene-Associated Bone Formation. Endocrinology, 2001, 142, 4047-4054.	2.8	381
96	Parathyroid Hormone-Related Protein Production by Breast Cancers, Improved Survival, and Reduced Bone Metastases. Journal of the National Cancer Institute, 2001, 93, 234-237.	6.3	110
97	Fetal parathyroids are not required to maintain placental calcium transport. Journal of Clinical Investigation, 2001, 107, 1007-1015.	8.2	110
98	Nuclear and nucleolar localization of parathyroid hormoneâ€related protein. Immunology and Cell Biology, 2000, 78, 395-402.	2.3	48
99	Therapeutic Approaches to Bone Diseases. Science, 2000, 289, 1508-1514.	12.6	1,578
100	Osteoprotegerin Produced by Osteoblasts Is an Important Regulator in Osteoclast Development and Function*. Endocrinology, 2000, 141, 3478-3484.	2.8	351
101	Breast Cancer Cells Interact with Osteoblasts to Support Osteoclast Formation1. Endocrinology, 1999, 140, 4451-4458.	2.8	497
102	Phosphorylation at the Cyclin-dependent Kinases Site (Thr85) of Parathyroid Hormone-related Protein Negatively Regulates Its Nuclear Localization. Journal of Biological Chemistry, 1999, 274, 18559-18566.	3.4	86
103	Importin β Recognizes Parathyroid Hormone-related Protein with High Affinity and Mediates Its Nuclear Import in the Absence of Importin α. Journal of Biological Chemistry, 1999, 274, 7391-7398.	3.4	185
104	A novel orthotopic model of breast cancer metastasis to bone. Clinical and Experimental Metastasis, 1999, 17, 163-170.	3.3	367
105	Dual posttranscriptional targets of retinoic acid-induced gene expression. Journal of Cellular Biochemistry, 1999, 72, 411-422.	2.6	0
106	Modulation of Osteoclast Differentiation and Function by the New Members of the Tumor Necrosis Factor Receptor and Ligand Families. Endocrine Reviews, 1999, 20, 345-357.	20.1	2,009
107	Osteotropic Agents Regulate the Expression of Osteoclast Differentiation Factor and Osteoprotegerin in Osteoblastic Stromal Cells. Endocrinology, 1998, 139, 4743-4743.	2.8	404
108	A Combination of Osteoclast Differentiation Factor and Macrophage-Colony Stimulating Factor Is Sufficient for both Human and Mouse Osteoclast Formation in Vitro. Endocrinology, 1998, 139, 4424-4427.	2.8	384

#	Article	IF	CITATIONS
109	Expression of Rat Homeobox Gene, rHOX, in Developing and Adult Tissues in Mice and Regulation of Its mRNA Expression in Osteoblasts by Bone Morphogenetic Protein 2 and Parathyroid Hormone-Related Protein. Molecular Endocrinology, 1998, 12, 1721-1732.	3.7	14
110	A Combination of Osteoclast Differentiation Factor and Macrophage-Colony Stimulating Factor Is Sufficient for both Human and Mouse Osteoclast Formation in Vitro. Endocrinology, 1998, 139, 4424-4427.	2.8	101
111	Expression of Rat Homeobox Gene, rHOX, in Developing and Adult Tissues in Mice and Regulation of Its mRNA Expression in Osteoblasts by Bone Morphogenetic Protein 2 and Parathyroid Hormone-Related Protein. Molecular Endocrinology, 1998, 12, 1721-1732.	3.7	7
112	Parathyroid hormone-related protein and hypercalcemia. Cancer, 1997, 80, 1564-1571.	4.1	96
113	Parathyroid hormoneâ€related protein and hypercalcemia. Cancer, 1997, 80, 1564-1571.	4.1	57
114	Expression of parathyroid hormone-related protein in cells of osteoblast lineage. , 1996, 166, 94-104.		100
115	Arg21 is the Preferred Kexin Cleavage Site in Parathyroid-Hormone-Related Protein. FEBS Journal, 1995, 229, 91-98.	0.2	22
116	Modulation of Osteoclast Differentiation. Endocrine Reviews, 1992, 13, 66-80.	20.1	783
117	Parathyroid hormoneâ€related protein: a possible endocrine function in lactation. Clinical Endocrinology, 1992, 37, 405-410.	2.4	102
118	Plasminogen activator regulation in osteoblasts: Parathyroid hormone inhibition of type-1 plasminogen activator inhibitor and its mRNA. Journal of Cellular Physiology, 1992, 152, 346-355.	4.1	37
119	Transforming growth factor beta inhibits plasminogen activator (PA) activity and stimulates production of urokinase-type PA, PA inhibitor-1 mRNA, and protein in rat osteoblast-like cells. Journal of Cellular Physiology, 1991, 149, 34-43.	4.1	59
120	A Carboxyl-Terminal Peptide from the Parathyroid Hormone-Related Protein Inhibits Bone Resorption by Osteoclasts*. Endocrinology, 1991, 129, 1762-1768.	2.8	159
121	Structural requirements for the action of parathyroid hormone-related protein (PTHrP) on bone resorption by isolated osteoclasts. Journal of Bone and Mineral Research, 1991, 6, 85-93.	2.8	77
122	Cloning of an osteoblastic cell line involved in the formation of osteoclast-like cells. Journal of Cellular Physiology, 1990, 145, 587-595.	4.1	86
123	The Bone Marrow-Derived Stromal Cell Lines MC3T3-G2/PA6 and ST2 Support Osteoclast-Like Cell Differentiation in Cocultures with Mouse Spleen Cells. Endocrinology, 1989, 125, 1805-1813.	2.8	482
124	Parathyroid hormone-related protein relaxes rat gastric smooth muscle and shows cross-desensitization with parathyroid hormone. Journal of Bone and Mineral Research, 1989, 4, 433-439.	2.8	49
125	OSTEOBLASTIC CELLS ARE INVOLVED IN OSTEOCLAST FORMATION. Endocrinology, 1988, 123, 2600-2602.	2.8	909
126	Induction of Calcitonin Receptors by lα, 25- Dihydroxyvitamin D ₃ in Osteoclast-Like Multinucleated Cells Formed from Mouse Bone Marrow Cells*. Endocrinology, 1988, 123, 1504-1510.	2.8	170

#	Article	IF	CITATIONS
127	HUMORAL HYPERCALCEMIA OF MALIGNANCY: INVOLVEMENT OF A NOVEL HORMONE. Australian and New Zealand Journal of Medicine, 1988, 18, 287-295.	0.5	12
128	Regulation of alkaline phosphatase expression in a neonatal rat clonal calvarial cell strain by retinoic acid. Journal of Bone and Mineral Research, 1988, 3, 53-61.	2.8	83
129	Inhibitory effects of parathyroid hormone on growth of osteogenic sarcoma cells. Calcified Tissue International, 1985, 37, 519-525.	3.1	84
130	Activity Ratio Measurements Reflect Intracellular Activation of Adenosine 3′,5′-Monophosphate-Dependent Protein Kinase in Osteoblasts*. Endocrinology, 1982, 111, 178-183.	2.8	65