Adam Santorelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6678949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dielectric Properties of Ovine Heart at Microwave Frequencies. Diagnostics, 2021, 11, 531.	2.6	10
2	Introducing the Social Robot MARIO to People Living with Dementia in Long Term Residential Care: Reflections. International Journal of Social Robotics, 2020, 12, 535-547.	4.6	17
3	Effect of Dehydration on Dielectric Measurements of Biological Tissue as Function of Time. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2020, 4, 200-207.	3.4	17
4	Determining the Concentration of Red Blood Cells using Dielectric Properties. , 2020, , .		1
5	The Perceptions of People with Dementia and Key Stakeholders Regarding the Use and Impact of the Social Robot MARIO. International Journal of Environmental Research and Public Health, 2020, 17, 8621.	2.6	34
6	Fast Measurements of Dielectric Properties with Small Size Microwave Transceiver. , 2020, , .		1
7	Dielectric profile of blood clots to inform ischemic stroke treatments. , 2020, 2020, 3723-3726.		4
8	Multi-frequency symmetry difference electrical impedance tomography with machine learning for human stroke diagnosis. Physiological Measurement, 2020, 41, 075010.	2.1	22
9	Detailed Dielectric Characterisation of the Heart and Great Vessels. , 2020, , .		0
10	Sensitivity and Specificity Estimation Using Patient-Specific Microwave Imaging in Diverse Experimental Breast Phantoms. IEEE Transactions on Medical Imaging, 2019, 38, 303-311.	8.9	30
11	Patient-Specific Debye Parameters for Human Blood. , 2019, 2019, 238-242.		1
12	Brain Haemorrhage Detection Through SVM Classification of Electrical Impedance Tomography Measurements. , 2019, , 211-244.		2
13	Evaluation of a Companion Robot for Individuals With Dementia: Quantitative Findings of the MARIO Project in an Irish Residential Care Setting. Journal of Gerontological Nursing, 2019, 45, 36-45.	0.6	40
14	Factors Affecting the Acceptability of Social Robots by Older Adults Including People with Dementia or Cognitive Impairment: A Literature Review. International Journal of Social Robotics, 2018, 10, 643-668.	4.6	82
15	Supervised Learning Classifiers for Electrical Impedance-based Bladder State Detection. Scientific Reports, 2018, 8, 5363.	3.3	26
16	Linear Regression for Estimating Bladder Volume with Voltage Signals. , 2018, , .		2
17	Image-based classification of bladder state using electrical impedance tomography. Physiological Measurement, 2018, 39, 124001.	2.1	16
18	Investigation of Anemia and the Dielectric Properties of Human Blood at Microwave Frequencies. IEEE Access, 2018, 6, 56885-56892.	4.2	9

ADAM SANTORELLI

#	Article	IF	CITATIONS
19	Brain haemorrhage detection using a SVM classifier with electrical impedance tomography measurement frames. PLoS ONE, 2018, 13, e0200469.	2.5	20
20	Quality control of carbon-rubber tissue phantoms: Comparative MRI, CT, X-ray and UWB microwave measurements. , 2017, , .		7
21	Microwave breast cancer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation. Biomedical Signal Processing and Control, 2017, 31, 366-376.	5.7	41
22	Modeling of the dielectric properties of biological tissues within the histology region. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 3290-3301.	2.9	21
23	ANATOMICALLY AND DIELECTRICALLY REALISTIC MICROWAVE HEAD PHANTOM WITH CIRCULATION AND RECONFIGURABLE LESIONS. Progress in Electromagnetics Research B, 2017, 78, 47-60.	1.0	16
24	Signal analysis and phantom experiments for a miniaturized time-domain microwave breast health monitoring device. , 2017, , .		2
25	Investigating the Effect of Social Robot Embodiment. Studies in Health Technology and Informatics, 2017, 242, 523-526.	0.3	4
26	Investigation of antenna array configurations for microwave radar breast screening. , 2016, , .		6
27	A miniaturized clock generator for a time-domain microwave breast health monitoring device. , 2016, , .		2
28	Comparison of microwave breast cancer detection results with breast phantom data and clinical trial data: Varying the number of antennas. , 2016, , .		5
29	Low-cost hardware for a time-domain microwave system for breast health monitoring. , 2016, , .		2
30	Hybrid artifact removal for breast imaging applied to a time-domain microwave system. , 2016, , .		2
31	A Wearable Microwave Antenna Array for Time-Domain Breast Tumor Screening. IEEE Transactions on Medical Imaging, 2016, 35, 1501-1509.	8.9	139
32	Flexible 16 Antenna Array for Microwave Breast Cancer Detection. IEEE Transactions on Biomedical Engineering, 2015, 62, 2516-2525.	4.2	217
33	Cost-sensitive ensemble classifiers for microwave breast cancer detection. , 2015, , .		9
34	A Time-Domain Microwave System for Breast Cancer Detection Using a Flexible Circuit Board. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 2986-2994.	4.7	43
35	Microwave Time-Domain Radar: Healthy Tissue Variations Over the Menstrual Cycle. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1310-1313.	4.0	16
36	INVESTIGATION OF CLASSIFIERS FOR TUMOR DETECTION WITH AN EXPERIMENTAL TIME-DOMAIN BREAST SCREENING SYSTEM. Progress in Electromagnetics Research, 2014, 144, 45-57.	4.4	32

#	Article	IF	CITATIONS
37	TIME-DOMAIN MICROWAVE RADAR APPLIED TO BREAST IMAGING: MEASUREMENT RELIABILITY IN A CLINICAL SETTING. Progress in Electromagnetics Research, 2014, 149, 119-132.	4.4	21
38	Breast tissue screening with microwave time-domain radar: Initial clinical trials. , 2014, , .		1
39	Breast monitoring via time-domain microwave radar: Early clinical trial study. , 2014, 2014, 6601-4.		5
40	Investigation of classification algorithms for a prototype microwave breast cancer monitor. , 2014, , .		5
41	Time-domain microwave radar for breast screening: Initial testing with volunteers. , 2014, , .		3
42	Predicting Cole-Cole parameters of microfluids with microstrip technology. , 2014, , .		2
43	Time-Domain Multistatic Radar System for Microwave Breast Screening. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 229-232.	4.0	112
44	Time-Domain Microwave Breast Cancer Detection: Extensive System Testing with Phantoms. Technology in Cancer Research and Treatment, 2013, 12, 131-143.	1.9	6
45	EXPERIMENTAL DEMONSTRATION OF PULSE SHAPING FOR TIME-DOMAIN MICROWAVE BREAST IMAGING. Progress in Electromagnetics Research, 2013, 133, 309-329.	4.4	26
46	MICROWAVE BREAST SCREENING IN THE TIME-DOMAIN: IDENTIFICATION AND COMPENSATION OF MEASUREMENT-INDUCED UNCERTAINTIES. Progress in Electromagnetics Research B, 2013, 55, 115-130.	1.0	9
47	Time-domain microwave cancer screening: Optimized pulse shaping applied to realistically shaped breast phantoms. , 2012, , .		3
48	Time-domain microwave breast screening system: Testing with advanced realistic breast phantoms. , 2012, , .		1
49	Recent progress in ultra-wideband microwave breast cancer detection. , 2012, , .		1
50	Pulse shaping for time-domain microwave breast tumour detection: Experiments with realistic tissue phantoms. , 2012, , .		3
51	SAR distribution in microwave breast screening: Results with TWTLTLA wideband antenna. , 2011, , .		9

52 Microwave breast imaging: Time-domain experiments on tissue phantoms. , 2011, , .