
## Paul A Roche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6678231/publications.pdf Version: 2024-02-01



PAUL A ROCHE

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Pancreas-specific SNAP23 depletion prevents pancreatitis by attenuating pathological basolateral exocytosis and formation of trypsin-activating autolysosomes. Autophagy, 2021, 17, 3068-3081.                                                       | 9.1  | 12        |
| 2  | Ubiquitination of MHC Class II by March-I Regulates Dendritic Cell Fitness. Journal of Immunology, 2021, 206, 494-504.                                                                                                                               | 0.8  | 7         |
| 3  | Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. Immunity, 2021, 54, 721-736.e10.                                                              | 14.3 | 30        |
| 4  | Inflammation rapidly recruits mammalian GMP and MDP from bone marrow into regional lymphatics.<br>ELife, 2021, 10, .                                                                                                                                 | 6.0  | 5         |
| 5  | Ligation of MHC Class II Induces PKC-Dependent Clathrin-Mediated Endocytosis of MHC Class II. Cells, 2020, 9, 1810.                                                                                                                                  | 4.1  | 5         |
| 6  | Biocompatible Fluorescent Nanodiamonds as Multifunctional Optical Probes for Latent Fingerprint<br>Detection. ACS Applied Materials & Interfaces, 2020, 12, 6641-6650.                                                                               | 8.0  | 55        |
| 7  | Activation of Dendritic Cells Alters the Mechanism of MHC Class II Antigen Presentation to CD4 T<br>Cells. Journal of Immunology, 2020, 204, 1621-1629.                                                                                              | 0.8  | 8         |
| 8  | Monitoring Protein Endocytosis and Recycling Using FACS-Based Assays. Methods in Molecular<br>Biology, 2019, 1988, 279-288.                                                                                                                          | 0.9  | 0         |
| 9  | The cysteine-rich domain of synaptosomal-associated protein of 23â€⁻kDa (SNAP-23) regulates its<br>membrane association and regulated exocytosis from mast cells. Biochimica Et Biophysica Acta -<br>Molecular Cell Research, 2019, 1866, 1618-1633. | 4.1  | 11        |
| 10 | Monitoring MHC-II Endocytosis and Recycling Using Cell-Surface Protein Biotinylation-Based Assays.<br>Methods in Molecular Biology, 2019, 1988, 271-277.                                                                                             | 0.9  | 4         |
| 11 | Dysfunction of antigen processing and presentation by dendritic cells in cancer. Molecular Immunology, 2019, 113, 31-37.                                                                                                                             | 2.2  | 75        |
| 12 | Ubiquitin-conjugating enzyme E2 D1 (Ube2D1) mediates lysine-independent ubiquitination of the E3<br>ubiquitin ligase March-I. Journal of Biological Chemistry, 2018, 293, 3904-3912.                                                                 | 3.4  | 27        |
| 13 | A major isoform of the E3 ubiquitin ligase March-I in antigen-presenting cells has regulatory sequences within its gene. Journal of Biological Chemistry, 2018, 293, 4478-4485.                                                                      | 3.4  | 8         |
| 14 | The E3 ubiquitin ligase MARCH1 regulates glucose-tolerance and lipid storage in a sex-specific manner.<br>PLoS ONE, 2018, 13, e0204898.                                                                                                              | 2.5  | 14        |
| 15 | Bioimaging: Polydopamine Encapsulation of Fluorescent Nanodiamonds for Biomedical Applications<br>(Adv. Funct. Mater. 33/2018). Advanced Functional Materials, 2018, 28, 1870234.                                                                    | 14.9 | 5         |
| 16 | Polydopamine Encapsulation of Fluorescent Nanodiamonds for Biomedical Applications. Advanced<br>Functional Materials, 2018, 28, 1801252.                                                                                                             | 14.9 | 58        |
| 17 | Editorial Overview: Antigen Processing and Presentation; many fingers in many pies. Current Opinion<br>in Immunology, 2017, 46, v-vii.                                                                                                               | 5.5  | 0         |
| 18 | Rab5 is critical for SNAP23 regulated granule-granule fusion during compound exocytosis. Scientific<br>Reports, 2017, 7, 15315.                                                                                                                      | 3.3  | 18        |

Paul A Roche

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Antigen Processing and Presentation Mechanisms in Myeloid Cells. Microbiology Spectrum, 2016, 4, .                                                                                                                                                | 3.0  | 41        |
| 20 | SNAP23 is selectively expressed in airway secretory cells and mediates baseline and stimulated mucin secretion. Bioscience Reports, 2015, 35, .                                                                                                   | 2.4  | 23        |
| 21 | Expression of the SNARE Protein SNAP-23 Is Essential for Cell Survival. PLoS ONE, 2015, 10, e0118311.                                                                                                                                             | 2.5  | 14        |
| 22 | Interleukin 10 (IL-10)-mediated Immunosuppression. Journal of Biological Chemistry, 2015, 290, 27158-27167.                                                                                                                                       | 3.4  | 119       |
| 23 | Suppression of antigen presentation by IL-10. Current Opinion in Immunology, 2015, 34, 22-27.                                                                                                                                                     | 5.5  | 214       |
| 24 | The ins and outs of MHC class II-mediated antigen processing and presentation. Nature Reviews Immunology, 2015, 15, 203-216.                                                                                                                      | 22.7 | 791       |
| 25 | Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10449-10454.                | 7.1  | 61        |
| 26 | Macropinocytosis in phagocytes: regulation of MHC class-II-restricted antigen presentation in dendritic cells. Frontiers in Physiology, 2015, 6, 1.                                                                                               | 2.8  | 318       |
| 27 | MHC class II association with lipid rafts on the antigen presenting cell surface. Biochimica Et<br>Biophysica Acta - Molecular Cell Research, 2015, 1853, 775-780.                                                                                | 4.1  | 46        |
| 28 | Invariant chain–MHC class II complexes: always odd and never invariant. Immunology and Cell Biology,<br>2014, 92, 471-472.                                                                                                                        | 2.3  | 23        |
| 29 | Calpain-1 Contributes to IgE-Mediated Mast Cell Activation. Journal of Immunology, 2014, 192, 5130-5139.                                                                                                                                          | 0.8  | 22        |
| 30 | TLR Signals Induce Phagosomal MHC-I Delivery from the Endosomal Recycling Compartment to Allow<br>Cross-Presentation. Cell, 2014, 158, 506-521.                                                                                                   | 28.9 | 270       |
| 31 | Major Histocompatibility Complex (MHC) Class II-Peptide Complexes Arrive at the Plasma Membrane in<br>Cholesterol-rich Microclusters. Journal of Biological Chemistry, 2013, 288, 13236-13242.                                                    | 3.4  | 48        |
| 32 | Regulation of MHC Class II-Peptide Complex Expression by Ubiquitination. Frontiers in Immunology, 2013, 4, 369.                                                                                                                                   | 4.8  | 30        |
| 33 | Disruption of Multivesicular Body Vesicles Does Not Affect Major Histocompatibility Complex (MHC)<br>Class II-Peptide Complex Formation and Antigen Presentation by Dendritic Cells*. Journal of Biological<br>Chemistry, 2013, 288, 24286-24292. | 3.4  | 11        |
| 34 | Internalizing MHC class II–peptide complexes are ubiquitinated in early endosomes and targeted for<br>lysosomal degradation. Proceedings of the National Academy of Sciences of the United States of<br>America, 2013, 110, 20188-20193.          | 7.1  | 35        |
| 35 | llºB kinase phosphorylation of SNAP-23 controls platelet secretion. Blood, 2013, 121, 4567-4574.                                                                                                                                                  | 1.4  | 95        |
| 36 | Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19380-19385.                                 | 7.1  | 17        |

PAUL A ROCHE

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Francisella tularensis Elicits IL-10 via a PGE2-Inducible Factor, to Drive Macrophage MARCH1 Expression and Class II Down-Regulation. PLoS ONE, 2012, 7, e37330.                                                              | 2.5  | 34        |
| 38 | Deletion of SNAP-23 Results in Pre-Implantation Embryonic Lethality in Mice. PLoS ONE, 2011, 6, e18444.                                                                                                                       | 2.5  | 33        |
| 39 | Proteolysis of the class II-associated invariant chain generates a peptide binding site in intracellular<br>HLA-DR molecules. Proc. Natl. Acad. Sci. USA. 1991. 88: 3150-3154. Journal of Immunology, 2011, 187,<br>1076-80.  | 0.8  | 6         |
| 40 | Novel Syntaxin 11 Gene (STX11) Mutation in Three Argentinean Patients with Hemophagocytic<br>Lymphohistiocytosis. Journal of Clinical Immunology, 2010, 30, 330-337.                                                          | 3.8  | 11        |
| 41 | A neuronal role for SNAP-23 in postsynaptic glutamate receptor trafficking. Nature Neuroscience, 2010, 13, 338-343.                                                                                                           | 14.8 | 119       |
| 42 | Distinct MHC Class II Molecules Are Associated on the Dendritic Cell Surface in<br>Cholesterol-dependent Membrane Microdomains. Journal of Biological Chemistry, 2010, 285,<br>35303-35310.                                   | 3.4  | 24        |
| 43 | Ubiquitination regulates MHC class II-peptide complex retention and degradation in dendritic cells.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107,<br>20465-20470.            | 7.1  | 100       |
| 44 | Dendritic Cell Activation Prevents MHC Class II Ubiquitination and Promotes MHC Class II Survival Regardless of the Activation Stimulus. Journal of Biological Chemistry, 2010, 285, 41749-41754.                             | 3.4  | 43        |
| 45 | MHC class II transport at a glance. Journal of Cell Science, 2009, 122, 1-4.                                                                                                                                                  | 2.0  | 38        |
| 46 | Major Histocompatibility Complex Class II-Peptide Complexes Internalize Using a Clathrin- and<br>Dynamin-independent Endocytosis Pathway. Journal of Biological Chemistry, 2008, 283, 14717-14727.                            | 3.4  | 111       |
| 47 | Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different<br>SNARE isoforms. Proceedings of the National Academy of Sciences of the United States of America,<br>2008, 105, 2580-2585. | 7.1  | 187       |
| 48 | Cholesterol regulates the loading of foreign antigens onto MHC class II in dendritic cells. FASEB Journal, 2008, 22, 1067.7.                                                                                                  | 0.5  | 0         |
| 49 | Defective cytotoxic lymphocyte degranulation in syntaxin-11–deficient familial hemophagocytic<br>lymphohistiocytosis 4 (FHL4) patients. Blood, 2007, 110, 1906-1915.                                                          | 1.4  | 272       |
| 50 | T cell-induced secretion of MHC class II–peptide complexes on B cell exosomes. EMBO Journal, 2007, 26,<br>4263-4272.                                                                                                          | 7.8  | 221       |
| 51 | Ternary SNARE Complexes Are Enriched in Lipid Rafts during Mast Cell Exocytosis. Traffic, 2006, 7, 1482-1494.                                                                                                                 | 2.7  | 100       |
| 52 | CDw78 Defines MHC Class II-Peptide Complexes That Require Ii Chain-Dependent Lysosomal Trafficking,<br>Not Localization to a Specific Tetraspanin Membrane Microdomain. Journal of Immunology, 2006, 177,<br>5451-5458.       | 0.8  | 25        |
| 53 | Phosphorylation of SNAP-23 Regulates Exocytosis from Mast Cells. Journal of Biological Chemistry, 2005, 280, 6610-6620.                                                                                                       | 3.4  | 113       |
| 54 | MHC Class II Molecules Traffic into Lipid Rafts during Intracellular Transport. Journal of<br>Immunology, 2004, 173, 4539-4546.                                                                                               | 0.8  | 35        |

Paul A Roche

| #  | Article                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Association of MHC class Il–peptide complexes with plasma membrane lipid microdomains. Current<br>Opinion in Immunology, 2004, 16, 103-107.                | 5.5  | 52        |
| 56 | MHC Class II-Peptide Complexes and APC Lipid Rafts Accumulate at the Immunological Synapse. Journal of Immunology, 2003, 170, 1329-1338.                   | 0.8  | 126       |
| 57 | Mast Cell Degranulation Requires <i>N</i> -Ethylmaleimide-Sensitive Factor-Mediated SNARE<br>Disassembly. Journal of Immunology, 2003, 171, 5345-5352.     | 0.8  | 70        |
| 58 | Differential phosphorylation of SNAP-25 in vivo by protein kinase C and protein kinase A. FEBS Letters, 2002, 532, 52-56.                                  | 2.8  | 41        |
| 59 | Trafficking of MHC class II molecules in the late secretory pathway. Current Opinion in Immunology, 2002, 14, 30-35.                                       | 5.5  | 93        |
| 60 | SNAP-29 Is a Promiscuous Syntaxin-Binding SNARE. Biochemical and Biophysical Research Communications, 2001, 285, 167-171.                                  | 2.1  | 60        |
| 61 | Response to 'Rafts for antigen presentation?'. Nature Immunology, 2001, 2, 3-3.                                                                            | 14.5 | 8         |
| 62 | The Last Exon of SNAP-23 Regulates Granule Exocytosis from Mast Cells. Journal of Biological Chemistry, 2001, 276, 25101-25106.                            | 3.4  | 54        |
| 63 | Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nature Immunology, 2000, 1, 156-162.                              | 14.5 | 309       |
| 64 | Intracellular Redirection of Plasma Membrane Trafficking after Loss of Epithelial Cell Polarity.<br>Molecular Biology of the Cell, 2000, 11, 3045-3060.    | 2.1  | 55        |
| 65 | Targeting of SNAP-25 to Membranes Is Mediated by Its Association with the Target SNARE Syntaxin.<br>Journal of Biological Chemistry, 2000, 275, 2959-2965. | 3.4  | 74        |
| 66 | Structure and chromosomal localization of the mouse SNAP-23 gene. Gene, 2000, 247, 181-189.                                                                | 2.2  | 6         |
| 67 | ldentification of syntaxin 1A as a novel binding protein for presenilin-1. Molecular Brain Research,<br>2000, 78, 100-107.                                 | 2.3  | 33        |
| 68 | Intracellular Protein Traffic in Lymphocytes. Immunity, 1999, 11, 391-398.                                                                                 | 14.3 | 16        |
| 69 | SNAP-23 and SNAP-25 Are Palmitoylatedin Vivo. Biochemical and Biophysical Research Communications, 1999, 258, 407-410.                                     | 2.1  | 94        |
| 70 | SNAP-23 participates in SNARE complex assembly in rat adipose cells. Biochemical Journal, 1999, 338, 709-715.                                              | 3.7  | 38        |
| 71 | SNAP-23 participates in SNARE complex assembly in rat adipose cells. Biochemical Journal, 1999, 338, 709.                                                  | 3.7  | 9         |
| 72 | Targeting of SNAP-23 and SNAP-25 in Polarized Epithelial Cells. Journal of Biological Chemistry, 1998, 273, 3422-3430.                                     | 3.4  | 98        |

PAUL A ROCHE

| #  | Article                                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | SNAP-23 Is Not Cleaved by Botulinum Neurotoxin E and Can Replace SNAP-25 in the Process of Insulin Secretion. Journal of Biological Chemistry, 1997, 272, 33023-33027.                                                                                                                    | 3.4  | 99        |
| 74 | Cloning and identification of human syntaxin 5 as a synaptobrevin/VAMP binding protein. Journal of<br>Molecular Neuroscience, 1997, 8, 159-161.                                                                                                                                           | 2.3  | 4         |
| 75 | Identification of a Novel Syntaxin- and Synaptobrevin/VAMP-binding Protein, SNAP-23, Expressed in<br>Non-neuronal Tissues. Journal of Biological Chemistry, 1996, 271, 13300-13303.                                                                                                       | 3.4  | 308       |
| 76 | Internalization and catabolism of radiolabelled antibodies to the MHC class-II invariant chain by B-cell<br>lymphomas. Biochemical Journal, 1996, 320, 293-300.                                                                                                                           | 3.7  | 80        |
| 77 | HLA-DM: An in vivo facilitator of MHC class II peptide loading. Immunity, 1995, 3, 259-262.                                                                                                                                                                                               | 14.3 | 76        |
| 78 | Formation of a nine-subunit complex by HLA class II glycoproteins and the invariant chain. Nature, 1991, 354, 392-394.                                                                                                                                                                    | 27.8 | 318       |
| 79 | Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature, 1990,<br>345, 615-618.                                                                                                                                                                    | 27.8 | 476       |
| 80 | Independent analysis of bait region cleavage dependent and thiolester bond cleavage dependent<br>conformational changes by cross-linking of .alpha.2-macroglobulin with<br>cis-dichlorodiammineplatinum(II) and dithiobis(succinimidyl propionate). Biochemistry, 1989, 28,<br>7629-7636. | 2.5  | 13        |
| 81 | Selectivity and stereospecificity of the reactions of dichlorodiammineplatinum(II) with three purified plasma proteins. Journal of Inorganic Biochemistry, 1988, 33, 67-76.                                                                                                               | 3.5  | 35        |
| 82 | Intersubunit cross-linking by cis-dichlorodiammineplatinum(II) stabilizes an .alpha.2-macroglobulin<br>"nascent" state: evidence that thiol ester bond cleavage correlates with receptor recognition site<br>exposure. Biochemistry, 1988, 27, 759-764.                                   | 2.5  | 25        |
| 83 | Analysis of thiolester bond cleavage-dependent conformational changes in binary<br>α2-macroglobulin-proteinase complexes. Archives of Biochemistry and Biophysics, 1988, 267, 285-293.                                                                                                    | 3.0  | 13        |
| 84 | The role of inter-α-trypsin inhibitor and other proteinase inhibitors in the plasma clearance of neutrophil elastase and plasmin. Archives of Biochemistry and Biophysics, 1987, 258, 591-599.                                                                                            | 3.0  | 14        |
| 85 | Specificity of α <sub><b>2</b></sub> -Macroglobulin Covalent Cross-Linking for the Active Domain of<br>Proteinases. Biological Chemistry Hoppe-Seyler, 1986, 367, 1177-1182.                                                                                                              | 1.4  | 15        |
|    |                                                                                                                                                                                                                                                                                           |      |           |

86 Antigen Processing and Presentation Mechanisms in Myeloid Cells. , 0, , 209-223.

5