Bryan W Day

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6677774/publications.pdf

Version: 2024-02-01

414414 394421 1,140 40 19 32 citations g-index h-index papers 43 43 43 2302 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	EphA3 Maintains Tumorigenicity and Is a Therapeutic Target in Glioblastoma Multiforme. Cancer Cell, 2013, 23, 238-248.	16.8	193
2	A reference collection of patient-derived cell line and xenograft models of proneural, classical and mesenchymal glioblastoma. Scientific Reports, 2019, 9, 4902.	3.3	127
3	Phase I and phase II sonidegib and vismodegib clinical trials for the treatment of paediatric and adult MB patients: a systemic review and meta-analysis. Acta Neuropathologica Communications, 2019, 7, 123.	5 . 2	73
4	Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells. Molecular Oncology, 2014, 8, 1603-1615.	4.6	61
5	Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines. Anatomy and Cell Biology, 2015, 48, 25.	1.0	49
6	Glioma Surgical Aspirate: A Viable Source of Tumor Tissue for Experimental Research. Cancers, 2013, 5, 357-371.	3.7	48
7	Structural Optimization and Pharmacological Evaluation of Inhibitors Targeting Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases (DYRK) and CDC-like kinases (CLK) in Glioblastoma. Journal of Medicinal Chemistry, 2017, 60, 2052-2070.	6.4	41
8	Intratumoural Heterogeneity Underlies Distinct Therapy Responses and Treatment Resistance in Glioblastoma. Cancers, 2019, 11, 190.	3.7	39
9	Endothelial, pericyte and tumor cell expression in glioblastoma identifies fibroblast activation protein (FAP) as an excellent target for immunotherapy. Clinical and Translational Immunology, 2020, 9, e1191.	3 . 8	34
10	Nuclear factor one B (<i>NFIB</i>) encodes a subtype-specific tumour suppressor in glioblastoma. Oncotarget, 2016, 7, 29306-29320.	1.8	34
11	ELK4 neutralization sensitizes glioblastoma to apoptosis through downregulation of the anti-apoptotic protein Mcl-1. Neuro-Oncology, 2011, 13, 1202-1212.	1.2	32
12	Global phosphoproteomics reveals DYRK1A regulates CDK1 activity in glioblastoma cells. Cell Death Discovery, 2021, 7, 81.	4.7	31
13	Anti-GD2-ch14.18/CHO coated nanoparticles mediate glioblastoma (GBM)-specific delivery of the aromatase inhibitor, Letrozole, reducing proliferation, migration and chemoresistance in patient-derived GBM tumor cells. Oncotarget, 2017, 8, 16605-16620.	1.8	30
14	Development and Biological Evaluation of a Photoactivatable Small Molecule Microtubule-Targeting Agent. ACS Medicinal Chemistry Letters, 2017, 8, 395-400.	2.8	28
15	Comparative study of preclinical mouse models of high-grade glioma for nanomedicine research: the importance of reproducing blood-brain barrier heterogeneity. Theranostics, 2020, 10, 6361-6371.	10.0	27
16	A Drug Screening Pipeline Using 2D and 3D Patient-Derived In Vitro Models for Pre-Clinical Analysis of Therapy Response in Glioblastoma. International Journal of Molecular Sciences, 2021, 22, 4322.	4.1	26
17	EphA3 Pay-Loaded Antibody Therapeutics for the Treatment of Glioblastoma. Cancers, 2018, 10, 519.	3.7	25
18	Digenic inheritance of mutations in EPHA2 and SLC26A4 in Pendred syndrome. Nature Communications, 2020, 11, 1343.	12.8	22

#	Article	IF	CITATIONS
19	A novel patient stratification strategy to enhance the therapeutic efficacy of dasatinib in glioblastoma. Neuro-Oncology, 2022, 24, 39-51.	1.2	22
20	The dystroglycan receptor maintains glioma stem cells in the vascular niche. Acta Neuropathologica, 2019, 138, 1033-1052.	7.7	19
21	Transcription factors NFIA and NFIB induce cellular differentiation in high-grade astrocytoma. Journal of Neuro-Oncology, 2020, 146, 41-53.	2.9	18
22	Direct evidence for transport of RNA from the mouse brain to the germline and offspring. BMC Biology, 2020, 18, 45.	3.8	18
23	Pharmacology of novel small-molecule tubulin inhibitors in glioblastoma cells with enhanced EGFR signalling. Biochemical Pharmacology, 2015, 98, 587-601.	4.4	15
24	Constitutive CHK1 Expression Drives a pSTAT3–CIP2A Circuit that Promotes Glioblastoma Cell Survival and Growth. Molecular Cancer Research, 2020, 18, 709-722.	3.4	15
25	Lower Tubulin Expression in Glioblastoma Stem Cells Attenuates Efficacy of Microtubule-Targeting Agents. ACS Pharmacology and Translational Science, 2019, 2, 402-413.	4.9	14
26	MR-guided focused ultrasound increases antibody delivery to nonenhancing high-grade glioma. Neuro-Oncology Advances, 2020, 2, vdaa030.	0.7	13
27	Q-Cell Glioblastoma Resource: Proteomics Analysis Reveals Unique Cell-States Are Maintained in 3D Culture. Cells, 2020, 9, 267.	4.1	12
28	DYRK1A Negatively Regulates CDK5-SOX2 Pathway and Self-Renewal of Glioblastoma Stem Cells. International Journal of Molecular Sciences, 2021, 22, 4011.	4.1	12
29	Clinicopathologic significance of nuclear HER4 and phospho-YAP(S ¹²⁷) in human breast cancers and matching brain metastases. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592094625.	3.2	11
30	Granule neuron precursor cell proliferation is regulated by NFIX and intersectin 1 during postnatal cerebellar development. Brain Structure and Function, 2019, 224, 811-827.	2.3	10
31	Effectiveness of porous silicon nanoparticle treatment at inhibiting the migration of a heterogeneous glioma cell population. Journal of Nanobiotechnology, 2021, 19, 60.	9.1	9
32	Changes in cell morphology guide identification of tubulin as the off-target for protein kinase inhibitors. Pharmacological Research, 2018, 134, 166-178.	7.1	8
33	Simultaneous targeting of DNA replication and homologous recombination in glioblastoma with a polyether ionophore. Neuro-Oncology, 2019, 22, 216-228.	1.2	8
34	MK2 Inhibition Induces p53-Dependent Senescence in Glioblastoma Cells. Cancers, 2020, 12, 654.	3.7	5
35	Transcriptomic Profiling of DNA Damage Response in Patient-Derived Glioblastoma Cells before and after Radiation and Temozolomide Treatment. Cells, 2022, 11, 1215.	4.1	5
36	MerTK activity is not necessary for the proliferation of glioblastoma stem cells. Biochemical Pharmacology, 2021, 186, 114437.	4.4	2

#	Article	IF	CITATIONS
37	EphA3 As a Target For Monoclonal Antibody Therapy For Acute Leukemia. Blood, 2013, 122, 5013-5013.	1.4	1
38	Immunotherapeutic Targeting of EphA3. Blood, 2014, 124, 3720-3720.	1.4	1
39	Abstract CT101: Phase I safety and bioimaging trial of ifabotuzumab in patients with glioblastoma. , 2021, , .		O
40	Engineering Novel Lentiviral Vectors for Labelling Tumour Cells and Oncogenic Proteins. Bioengineering, 2022, 9, 91.	3. 5	0