Alexandre C M Correia

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6676783/publications.pdf
Version: 2024-02-01

1 Eviction-like resonances for satellite orbits. Astronomy and Astrophysics, 2022, 657, A103. 4

Detection of the tidal deformation of WASP-103b at 3 <i>Ïf </i> with CHEOPS. Astronomy and Astrophysics, 2022, 657, A52.
5.1

22

BEBOP III. Observations and an independent mass measurement of Kepler-16 $\hat{A}(A B) \hat{A} b$ â $€^{\text {" }}$ the first
3 circumbinary planet detected with radial velocities. Monthly Notices of the Royal Astronomical
$4.4 \quad 16$
Society, 2022, $511,3561-3570$.

BEBOP II: sensitivity to sub-Saturn circumbinary planets using radial-velocities. Monthly Notices of the
BEBOP II: sensitivity to sub-Saturn circumbinary plan
Royal Astronomical Society, 2022, 511, 3571-3583.

Tidal evolution for any rheological model using a vectorial approach expressed in Hansen
$5 \begin{aligned} & \text { Tidal evolution for any rheological model using a vectorial approach expre } \\ & \text { coefficients. Celestial Mechanics and Dynamical Astronomy, 2022, 134, }\end{aligned}$
1.4
4.4

17

6 Revisiting the analysis of HW Virginis eclipse timing data. Astronomy and Astrophysics, 2021, 648, A85.
$5.1 \quad 12$
$7 \quad$ Six transiting planets and a chain of Laplace resonances in TOI-178. Astronomy and Astrophysics, 2021, 649, A26.

New constraints on the planetary system around the young active star AU Mic. Astronomy and Astrophysics, 2021, 649, A177.

An analytical model for tidal evolution in co-orbital systems. I. Application to exoplanets. Celestial
$9 \quad$ Mechanics and Dynamical Astronomy, 2021, 133, 1.

Faint objects in motion: the new frontier of high precision astrometry. Experimental Astronomy, 2021,
$10 \quad 51,845-886$.
3.7

17

Radio astronomy and Space science in Azores: Enhancing the Atlantic VLBI infrastructure cluster.
Advances in Space Research, 2021, 68, 3064-3078.

Andrade rheology in time-domain. Application to Enceladus' dissipation of energy due to forced
12 libration. Icarus, 2020, 343, 113610.
2.5

18

13 TOI-1338: TESSâ€TM First Transiting Circumbinary Planet. Astronomical Journal, 2020, 159, 253.
4.7

58

14 Why do warm Neptunes present nonzero eccentricity?. Astronomy and Astrophysics, 2020, 635, A37.
5.1

22

Discovery and characterization of the exoplanets WASP-148b and c. Astronomy and Astrophysics, 2020,
5.1

14
1.4

Chaotic dynamics in the (47171) Lempo triple system. Icarus, 2018, 305, 250-261.
2.5

```
25 The <i>TROY </i> project: Searching for co-orbital bodies to known planets. Astronomy and
Astrophysics, 2018, 609, A96.
```

$5.1 \quad 28$

26 The TROY project. Astronomy and Astrophysics, 2018, 618, A42.
5.1

21

$$
\begin{aligned}
& 27 \text { Dynamical evolution of triple-star systems by Lidovấ "Kozai cycles and tidal friction. Monthly Notices } \\
& \text { of the Royal Astronomical Society, 2018, 479, 4749-4759. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Numerical modelling of tertiary tides. Monthly Notices of the Royal Astronomical Society, 2018, 479, } \\
& 3604-3615 .
\end{aligned}
$$

$4.4 \quad 7$

Detection of co-orbital planets by combining transit and radial-velocity measurements. Astronomy and Astrophysics, 2017, 599, L7.
5.1

25

Radial velocity data analysis with compressed sensing techniques. Monthly Notices of the Royal
4.4

62
Astronomical Society, 2017, 464, 1220-1246.

The rotation of planets hosting atmospheric tides: from Venus to habitable super-Earths. Astronomy and Astrophysics, 2017, 603, A108.
5.1

22

Is the activity level of HDâ€\%o80606 influenced by its eccentric planet?. Astronomy and Astrophysics, 2016,
5.1

13

On the rotation of co-orbital bodies in eccentric orbits. Celestial Mechanics and Dynamical

Complete spin and orbital evolution of close-in bodies using a Maxwell viscoelastic rheology
Celestial Mechanics and Dynamical Astronomy, 2016, 126, 31-60.

Cassini states for black hole binaries. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L49-L53.

Stellar and planetary Cassini states. Astronomy and Astrophysics, 2015, 582, A69.
5.1
<i>Mercury-T</i>: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62.
Astronomy and Astrophysics, 2015, 583, Al16.

Spin-orbit coupling and chaotic rotation for circumbinary bodies. Astronomy and Astrophysics, 2015,
580, L14.

The EChO science case. Experimental Astronomy, 2015, 40, 329-391.

Detectability of quasi-circular co-orbital planets. Application to the radial velocity technique.
Astronomy and Astrophysics, 2015, 581, A128.

Spin evolution of Earth-sized exoplanets, including atmospheric tides and coreâ€"mantle friction.
International Journal of Astrobiology, 2015, 14, 233-254.
$45 \quad$ Transit light curve and inner structure of close-in planets. Astronomy and Astrophysics, 2014, 570, L5.
5.1

25

Resonance breaking due to dissipation in planar planetary systems. Astronomy and Astrophysics, 2014, 566, A137.
5.1

40
47 Deformation and tidal evolution of close-in planets and satellites using a Maxwell viscoelastic rheology. Astronomy and Astrophysics, 2014, 571, A50.
5.1

83

48 SOPHIE velocimetry of<i>Kepler</i>transit candidates. Astronomy and Astrophysics, 2014, 571, A37.
5.1

60

Tidal evolution in multiple planet systems: application to Kepler-62 and Kepler-186. Proceedings of the International Astronomical Union, 2014, 9, 58-61.

Spin-orbit coupling and chaotic rotation for eccentric coorbital bodies. Proceedings of the International Astronomical Union, 2014, 9, 190-191.

0
SPIN-ORBIT COUPLING AND CHAOTIC ROTATION FOR COORBITAL BODIES IN QUASI-CIRCULAR ORBITS.
Astrophysical Journal, 2013, 779, 20.

A semi-empirical stability criterion for real planetary systems with eccentric orbits. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3547-3556.
55 IMPACT CRATERING ON MERCURY: CONSEQUENCES FOR THE SPIN EVOLUTION. Astrophysical Journal
55 Letters, 2012, 751, L43.
Tidal evolution of hierarchical and inclined systems. Celestial Mechanics and Dynamical Astronomy,2011, 111, 105-130.
63 On the equilibrium rotation of Hot Jupiters in eccentric and excited orbits. Proceedings of the
64 Long-term evolution of the spin of Mercury. Icarus, 2010, 205, 338-355. 2.5 21
65 Dynamical stability analysis of the HDâ€\%o202206 system and constraints to the planetary orbits. Astronomy and Astrophysics, 2010, 519, A10.
5.142
66 The HARPS search for southern extra-solar planets. Astronomy and Astrophysics, 2010, 511, A21.5.1119
67 Mercury's capture into the $3 / 2$ spinâ $€$ "orbit resonance including the effect of coreâ€"mantle friction. 2.5 77
Icarus, 2009, 201, 1-11.
The coreâ€"mantle friction effect on the secular spin evolution of terrestrial planets. Earth and
Planetary Science Letters, 2006, 252, 398-412.

76 An extrasolar planetary system with three Neptune-mass planets. Nature, 2006, 441, 305-309.

77	The CORALIE survey for southern extra-solar planets. Astronomy and Astrophysics, 2005, 440, 751-758.	5.1	122

82 Long-term evolution of the spin of Venus. Icarus, 2003, 163, 24-45.
2.5

89

83	Different tidal torques on a planet with a dense atmosphere and consequences to the spin dynamics. Journal of Geophysical Research, 2003, 108, .	3.3	35
84	The four final rotation states of Venus. Nature, 2001, 411, 767-770.	27.8	134

