
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6676783/publications.pdf Version: 2024-02-01

ALEXANDRE C M CORREIA

#	Article	IF	CITATIONS
1	A long-term numerical solution for the insolation quantities ofÂtheÂEarth. Astronomy and Astrophysics, 2004, 428, 261-285.	5.1	2,882
2	Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus, 2004, 170, 343-364.	2.5	821
3	An extrasolar planetary system with three Neptune-mass planets. Nature, 2006, 441, 305-309.	27.8	317
4	Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature, 2004, 429, 848-850.	27.8	159
5	The four final rotation states of Venus. Nature, 2001, 411, 767-770.	27.8	134
6	The CORALIE survey for southern extra-solar planets. Astronomy and Astrophysics, 2005, 440, 751-758.	5.1	122
7	The HARPS search for southern extra-solar planets. Astronomy and Astrophysics, 2010, 511, A21.	5.1	119
8	Tidal evolution of hierarchical and inclined systems. Celestial Mechanics and Dynamical Astronomy, 2011, 111, 105-130.	1.4	110
9	Six transiting planets and a chain of Laplace resonances in TOI-178. Astronomy and Astrophysics, 2021, 649, A26.	5.1	94
10	Long-term evolution of the spin of Venus. Icarus, 2003, 163, 1-23.	2.5	92
11	The HARPS search for southern extra-solar planets. Astronomy and Astrophysics, 2007, 462, 769-776.	5.1	92
12	Long-term evolution of the spin of Venus. Icarus, 2003, 163, 24-45.	2.5	89
13	Deformation and tidal evolution of close-in planets and satellites using a Maxwell viscoelastic rheology. Astronomy and Astrophysics, 2014, 571, A50.	5.1	83
14	Tidal dissipation within hot Jupiters: a new appraisal. Astronomy and Astrophysics, 2007, 462, L5-L8.	5.1	79
15	Mercury's capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction. Icarus, 2009, 201, 1-11.	2.5	77
16	The ELODIE survey for northern extra-solar planets. Astronomy and Astrophysics, 2008, 479, 271-275.	5.1	64
17	Radial velocity data analysis with compressed sensing techniques. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1220-1246.	4.4	62
18	New constraints on the planetary system around the young active star AU Mic. Astronomy and Astrophysics, 2021, 649, A177.	5.1	62

#	Article	IF	CITATIONS
19	SOPHIE velocimetry of <i>Kepler</i> transit candidates. Astronomy and Astrophysics, 2014, 571, A37.	5.1	60
20	TOI-1338: TESS' First Transiting Circumbinary Planet. Astronomical Journal, 2020, 159, 253.	4.7	58
21	Mercury's spin–orbit resonance explained byÂinitial retrograde and subsequent synchronousÂrotation. Nature Geoscience, 2012, 5, 18-21.	12.9	56
22	ON THE EQUILIBRIUM FIGURE OF CLOSE-IN PLANETS AND SATELLITES. Astrophysical Journal, 2013, 767, 128.	4.5	56
23	SECULAR EVOLUTION OF A SATELLITE BY TIDAL EFFECT: APPLICATION TO TRITON. Astrophysical Journal, 2009, 704, L1-L4.	4.5	55
24	A semi-empirical stability criterion for real planetary systems with eccentric orbits. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3547-3556.	4.4	54
25	<i>Mercury-T</i> : A new code to study tidally evolving multi-planet systems. Applications to Kepler-62. Astronomy and Astrophysics, 2015, 583, A116.	5.1	52
26	Planetary system LHS 1140 revisited with ESPRESSO and TESS. Astronomy and Astrophysics, 2020, 642, A121.	5.1	50
27	PUMPING THE ECCENTRICITY OF EXOPLANETS BY TIDAL EFFECT. Astrophysical Journal Letters, 2012, 744, L23.	8.3	48
28	The core–mantle friction effect on the secular spin evolution of terrestrial planets. Earth and Planetary Science Letters, 2006, 252, 398-412.	4.4	46
29	Dynamical stability analysis of the HD 202206 system and constraints to the planetary orbits. Astronomy and Astrophysics, 2010, 519, A10.	5.1	42
30	Spin evolution of Earth-sized exoplanets, including atmospheric tides and core–mantle friction. International Journal of Astrobiology, 2015, 14, 233-254.	1.6	42
31	Resonance breaking due to dissipation in planar planetary systems. Astronomy and Astrophysics, 2014, 566, A137.	5.1	40
32	IMPACT CRATERING ON MERCURY: CONSEQUENCES FOR THE SPIN EVOLUTION. Astrophysical Journal Letters, 2012, 751, L43.	8.3	39
33	Precession due to a close binary system: an alternative explanation for \hat{l}_2 -Octantis?. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3447-3456.	4.4	37
34	Different tidal torques on a planet with a dense atmosphere and consequences to the spin dynamics. Journal of Geophysical Research, 2003, 108, .	3.3	35
35	Complete spin and orbital evolution of close-in bodies using a Maxwell viscoelastic rheology. Celestial Mechanics and Dynamical Astronomy, 2016, 126, 31-60.	1.4	33
36	SPIN-ORBIT COUPLING AND CHAOTIC ROTATION FOR COORBITAL BODIES IN QUASI-CIRCULAR ORBITS. Astrophysical Journal, 2013, 779, 20.	4.5	32

#	Article	IF	CITATIONS
37	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
38	Nearly polar orbit of the sub-Neptune HD 3167 c. Astronomy and Astrophysics, 2019, 631, A28.	5.1	31
39	Secular and tidal evolution of circumbinary systems. Celestial Mechanics and Dynamical Astronomy, 2016, 126, 189-225.	1.4	29
40	The <i>TROY </i> project: Searching for co-orbital bodies to known planets. Astronomy and Astrophysics, 2018, 609, A96.	5.1	28
41	Transit light curve and inner structure of close-in planets. Astronomy and Astrophysics, 2014, 570, L5.	5.1	25
42	Coupled orbital and spin evolution of the CoRoT-7 two-planet system using a Maxwell viscoelastic rheology. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3249-3259.	4.4	25
43	Detection of co-orbital planets by combining transit and radial-velocity measurements. Astronomy and Astrophysics, 2017, 599, L7.	5.1	25
44	Detectability of shape deformation in short-period exoplanets. Astronomy and Astrophysics, 2019, 621, A117.	5.1	24
45	The rotation of planets hosting atmospheric tides: from Venus to habitable super-Earths. Astronomy and Astrophysics, 2017, 603, A108.	5.1	22
46	Why do warm Neptunes present nonzero eccentricity?. Astronomy and Astrophysics, 2020, 635, A37.	5.1	22
47	Detection of the tidal deformation of WASP-103b at 3 <i>$\hat{I}f$ /i> with CHEOPS. Astronomy and Astrophysics, 2022, 657, A52.</i>	5.1	22
48	Long-term evolution of the spin of Mercury. Icarus, 2010, 205, 338-355.	2.5	21
49	The TROY project. Astronomy and Astrophysics, 2018, 618, A42.	5.1	21
50	Orbital migration induced by anisotropic evaporation. Astronomy and Astrophysics, 2012, 537, L3.	5.1	20
51	Spin-orbit coupling and chaotic rotation for circumbinary bodies. Astronomy and Astrophysics, 2015, 580, L14.	5.1	20
52	Detectability of quasi-circular co-orbital planets. Application to the radial velocity technique. Astronomy and Astrophysics, 2015, 581, A128.	5.1	20
53	Co-orbital exoplanets from close-period candidates: the TOI-178 case. Astronomy and Astrophysics, 2019, 624, A46.	5.1	20
54	Andrade rheology in time-domain. Application to Enceladus' dissipation of energy due to forced libration. Icarus, 2020, 343, 113610.	2.5	18

#	Article	IF	CITATIONS
55	Dynamical analysis and constraints for the HD 196885 system. Astronomy and Astrophysics, 2012, 541, A151.	5.1	17
56	Stellar and planetary Cassini states. Astronomy and Astrophysics, 2015, 582, A69.	5.1	17
57	Faint objects in motion: the new frontier of high precision astrometry. Experimental Astronomy, 2021, 51, 845-886.	3.7	17
58	BEBOP II: sensitivity to sub-Saturn circumbinary planets using radial-velocities. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3571-3583.	4.4	17
59	BEBOP III. Observations and an independent mass measurement of Kepler-16Â(AB)Âb – the first circumbinary planet detected with radial velocities. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3561-3570.	4.4	16
60	Discovery and characterization of the exoplanets WASP-148b and c. Astronomy and Astrophysics, 2020, 640, A32.	5.1	14
61	ls the activity level of HD 80606 influenced by its eccentric planet?. Astronomy and Astrophysics, 2016, 592, A143.	5.1	13
62	Dynamical evolution of triple-star systems by Lidov–Kozai cycles and tidal friction. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4749-4759.	4.4	13
63	On the coplanar eccentric non-restricted co-orbital dynamics. Celestial Mechanics and Dynamical Astronomy, 2018, 130, 1.	1.4	12
64	Revisiting the analysis of HW Virginis eclipse timing data. Astronomy and Astrophysics, 2021, 648, A85.	5.1	12
65	Chaotic dynamics in the (47171) Lempo triple system. Icarus, 2018, 305, 250-261.	2.5	10
66	The effects of deformation inertia (kinetic energy) in the orbital and spin evolution of close-in bodies. Celestial Mechanics and Dynamical Astronomy, 2018, 130, 1.	1.4	8
67	Spin-orbit coupling for close-in planets. Astronomy and Astrophysics, 2019, 630, A102.	5.1	8
68	Numerical modelling of tertiary tides. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3604-3615.	4.4	7
69	An analytical model for tidal evolution in co-orbital systems. I. Application to exoplanets. Celestial Mechanics and Dynamical Astronomy, 2021, 133, 1.	1.4	6
70	Cassini states for black hole binaries. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L49-L53.	3.3	5
71	Tidal evolution of the Pluto–Charon binary. Astronomy and Astrophysics, 2020, 644, A94.	5.1	5
72	On the rotation of co-orbital bodies in eccentric orbits. Celestial Mechanics and Dynamical Astronomy, 2016, 125, 223-246.	1.4	4

#	Article	IF	CITATIONS
73	Eviction-like resonances for satellite orbits. Astronomy and Astrophysics, 2022, 657, A103.	5.1	4
74	On tidal theories and the rotation of viscous bodies. EAS Publications Series, 2019, 82, 91-98.	0.3	3
75	Tidal evolution for any rheological model using a vectorial approach expressed in Hansen coefficients. Celestial Mechanics and Dynamical Astronomy, 2022, 134, .	1.4	3
76	On the equilibrium rotation of Hot Jupiters in eccentric and excited orbits. Proceedings of the International Astronomical Union, 2010, 6, 287-294.	0.0	1
77	Searching for stable orbits in the HD 10180 planetary system. EPJ Web of Conferences, 2011, 11, 05001.	0.3	1
78	Radio astronomy and Space science in Azores: Enhancing the Atlantic VLBI infrastructure cluster. Advances in Space Research, 2021, 68, 3064-3078.	2.6	1
79	EVOLUTION OF THE SPIN OF MERCURY AND ITS CAPTURE INTO THE 3/2 SPIN-ORBIT RESONANCE. , 2006, , .		Ο
80	Stellar Wobble Due to a Nearby Binary System. Proceedings of the International Astronomical Union, 2011, 7, 137-138.	0.0	0
81	Tidal evolution in multiple planet systems: application to Kepler-62 and Kepler-186. Proceedings of the International Astronomical Union, 2014, 9, 58-61.	0.0	Ο
82	Spin-orbit coupling and chaotic rotation for eccentric coorbital bodies. Proceedings of the International Astronomical Union, 2014, 9, 190-191.	0.0	0
83	Determination of the Orbital Parameters of a System with N + 1 Bodies using a Simple Fourier Analysis of the Data. , 2008, , 207-210.		0

Finding Stable Fits for Extrasolar Planetary Systems. , 2008, , 267-268.

0