
Ruairidh J H Sawers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6676048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A B73×Palomero Toluqueño mapping population reveals local adaptation in Mexican highland maize. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	11
2	Demonstration of local adaptation in maize landraces by reciprocal transplantation. Evolutionary Applications, 2022, 15, 817-837.	3.1	15
3	An adaptive teosinte <i>mexicana</i> introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
4	<scp>Rhizosphere</scp> <scp>bacterial communities differ among traditional maize landraces</scp> . Environmental DNA, 2022, 4, 1241-1249.	5.8	5
5	The <i>pho1;2a′â€m1.1</i> allele of <i>Phosphate1</i> conditions misregulation of the phosphorus starvation response in maize (<scp> <i>Zea mays</i> ssp. <i>mays</i> </scp> L.). Plant Direct, 2022, 6, .	1.9	0
6	ldentification of the maize Mediator CDK8 module and transposon-mediated mutagenesis of <i>ZmMed12a</i> . International Journal of Developmental Biology, 2021, 65, 383-394.	0.6	2
7	Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.). BMC Plant Biology, 2021, 21, 259.	3.6	16
8	Gene regulatory effects of a large chromosomal inversion in highland maize. PLoS Genetics, 2020, 16, e1009213.	3.5	46
9	The genetic architecture of host response reveals the importance of arbuscular mycorrhizae to maize cultivation. ELife, 2020, 9, .	6.0	24
10	Adaptive phenotypic divergence in an annual grass differs across biotic contexts*. Evolution; International Journal of Organic Evolution, 2019, 73, 2230-2246.	2.3	22
11	Inoculation with the mycorrhizal fungus <i>Rhizophagus irregularis</i> modulates the relationship between root growth and nutrient content in maize (<i>Zea mays</i> ssp. <i>mays</i> L.). Plant Direct, 2019, 3, e00192.	1.9	19
12	Characterization of introgression from the teosinte <i>Zea mays</i> ssp. <i>mexicana</i> to Mexican highland maize. PeerJ, 2019, 7, e6815.	2.0	24
13	Harnessing cross-border resources to confront climate change. Environmental Science and Policy, 2018, 87, 128-132.	4.9	16
14	The impact of domestication and crop improvement on arbuscular mycorrhizal symbiosis in cereals: insights from genetics and genomics. New Phytologist, 2018, 220, 1135-1140.	7.3	54
15	Evolutionary Responses to Conditionality in Species Interactions across Environmental Gradients. American Naturalist, 2018, 192, 715-730.	2.1	20
16	A rice Serine/Threonine receptor-like kinase regulates arbuscular mycorrhizal symbiosis at the peri-arbuscular membrane. Nature Communications, 2018, 9, 4677.	12.8	45
17	Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of rootâ€external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 2017, 214, 632-643.	7.3	210
18	An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants, 2017, 3, 17073.	9.3	72

RUAIRIDH J H SAWERS

#	Article	IF	CITATIONS
19	Co-ordinated Changes in the Accumulation of Metal Ions in Maize (Zea mays ssp. mays L.) in Response to Inoculation with the Arbuscular Mycorrhizal Fungus Funneliformis mosseae. Plant and Cell Physiology, 2017, 58, 1689-1699.	3.1	27
20	Allele specific expression analysis identifies regulatory variation associated with stress-related genes in the Mexican highland maize landrace Palomero Toluqueñ0. PeerJ, 2017, 5, e3737.	2.0	32
21	Characterization and Transposon Mutagenesis of the Maize (Zea mays) Pho1 Gene Family. PLoS ONE, 2016, 11, e0161882.	2.5	13
22	The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family. Frontiers in Plant Science, 2015, 6, 341.	3.6	51
23	Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6754-6759.	7.1	99
24	Origins of maize: a further paradox resolved. Frontiers in Genetics, 2011, 2, 53.	2.3	4
25	Phosphate Deprivation in Maize: Genetics and Genomics. Plant Physiology, 2011, 156, 1067-1077.	4.8	83
26	Characterizing variation in mycorrhiza effect among diverse plant varieties. Theoretical and Applied Genetics, 2010, 120, 1029-1039.	3.6	57
27	Tissue-Adapted Invasion Strategies of the Rice Blast Fungus <i>Magnaporthe oryzae</i> Â. Plant Cell, 2010, 22, 3177-3187.	6.6	179
28	Structural Determinants of Antimicrobial and Antiplasmodial Activity and Selectivity in Histidine-rich Amphipathic Cationic Peptides. Journal of Biological Chemistry, 2009, 284, 119-133.	3.4	79
29	Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends in Plant Science, 2008, 13, 93-97.	8.8	194
30	The Molecular Components of Nutrient Exchange in Arbuscular Mycorrhizal Interactions. , 2008, , 37-59.		6
31	A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf. BMC Genomics, 2007, 8, 12.	2.8	57
32	In planta transient expression as a system for genetic and biochemical analyses of chlorophyll biosynthesis. Plant Methods, 2006, 2, 15.	4.3	12
33	The Maize Oil Yellow1 (Oy1) Gene Encodes the I Subunit of Magnesium Chelatase. Plant Molecular Biology, 2006, 60, 95-106.	3.9	79
34	Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223, 627-636.	3.2	84
35	MutagenesisSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY559172, AY559173, AY559174, AY559175, AY559176, AY559177, AY559178, AY559 AY559180, AY559181, AY559182, AY559183, AY559184, AY559185, AY559186, AY559187, AY559188, AY55 AY559190, AY559191, AY559192, AY559193, AY559194, AY559195, AY559196, AY559197, AY559198, AY559198, AY559190, AY559190, AY559197, AY559198, AY559194, AY559195, AY559196, AY559197, AY559198, AY559198, AY559190, AY559196, AY559197, AY559198, AY559198, AY559195, AY559196, AY559197, AY559198, AY559198, AY559197, AY559198, AY559197, AY559198, AY559197, AY559198, AY559197, AY559198, AY559198, AY559199, AY559190, AY559197, AY559198, AY559198, AY559197, AY559198, AY559197, AY559198, AY559198, AY559197, AY559198, AY559197, AY559198, AY559197, AY559198, AY559197, AY559198, AY559197, AY559198, AY559180, AY55	o9189,	60
36	AY559200, AY559201, AY559202, AY. Genetics, 2005, 169, 981-995. Cereal phytochromes: targets of selection, targets for manipulation?. Trends in Plant Science, 2005, 10, 138-143.	8.8	66

#	Article	IF	CITATIONS
37	The Elm1 (ZmHy2) Gene of Maize Encodes a Phytochromobilin Synthase. Plant Physiology, 2004, 136, 2771-2781.	4.8	44
38	elongated mesocotyl1, a Phytochrome-Deficient Mutant of Maize. Plant Physiology, 2002, 130, 155-163.	4.8	68
39	Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant Journal, 2000, 21, 317-327.	5.7	67
40	BUNDLE SHEATH DEFECTIVE2, a Novel Protein Required for Post-Translational Regulation of the rbcL Gene of Maize. Plant Cell, 1999, 11, 849-864.	6.6	149