List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6675929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Population-Genomic Analysis Identifies a Low Rate of Global Adaptive Fixation in the Proteins of the Cyclical Parthenogen <i>Daphnia magna</i> . Molecular Biology and Evolution, 2022, 39, .	8.9	8
2	Daphnia magna egg piRNA cluster expression profiles change as mothers age. BMC Genomics, 2022, 23, .	2.8	1
3	Pathogen Dynamics across the Diversity of Aging. American Naturalist, 2021, 197, 203-215.	2.1	6
4	DNA methylation differs extensively between strains of the same geographical origin and changes with age in Daphnia magna. Epigenetics and Chromatin, 2021, 14, 4.	3.9	18
5	<i>Daphnia magna</i> modifies its gene expression extensively in response to caloric restriction revealing a novel effect on haemoglobin isoform preference. Molecular Ecology, 2020, 29, 3261-3276.	3.9	5
6	Genome-wide methylation is modified by caloric restriction in Daphnia magna. BMC Genomics, 2019, 20, 197.	2.8	21
7	<i>Daphnia magna</i> micro <scp>RNA</scp> s respond to nutritional stress and ageing but are not transgenerational. Molecular Ecology, 2018, 27, 1402-1412.	3.9	21
8	Testing hypotheses for maternal effects in <i>Daphnia magna</i> . Journal of Evolutionary Biology, 2018, 31, 211-216.	1.7	15
9	Mitogenome phylogeographic analysis of a planktonic crustacean. Molecular Phylogenetics and Evolution, 2018, 129, 138-148.	2.7	36
10	Bigger is better: changes in body size explain a maternal effect of food on offspring disease resistance. Ecology and Evolution, 2017, 7, 1403-1409.	1.9	25
11	Disease spread in age structured populations with maternal age effects. Ecology Letters, 2017, 20, 445-451.	6.4	24
12	Caging and Uncaging Genetics. PLoS Biology, 2016, 14, e1002525.	5.6	13
13	Daphnia magna transcriptome by RNA-Seq across 12 environmental stressors. Scientific Data, 2016, 3, 160030.	5.3	89
14	Maternal effects on offspring consumption can stabilize fluctuating predator–prey systems. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152173.	2.6	2
15	Transcriptome profiling during a natural host-parasite interaction. BMC Genomics, 2015, 16, 643.	2.8	18
16	Effects of Juvenile Host Density and Food Availability on Adult Immune Response, Parasite Resistance and Virulence in a Daphnia-Parasite System. PLoS ONE, 2014, 9, e94569.	2.5	1
17	Elevated maternal temperature enhances offspring disease resistance in <i>Daphnia magna</i> . Functional Ecology, 2014, 28, 424-431.	3.6	44
18	Maternal food quantity affects offspring feeding rate in <i>Daphnia magna</i> . Biology Letters, 2014, 10, 20140356.	2.3	39

#	Article	IF	CITATIONS
19	Rapid change in parasite infection traits over the course of an epidemic in a wild host–parasite population. Oikos, 2014, 123, 232-238.	2.7	20
20	The development of pathogen resistance in <i>Daphnia magna</i> : implications for disease spread in age-structured populations. Journal of Experimental Biology, 2014, 217, 3929-34.	1.7	26
21	The bacterial parasite <i><scp>P</scp>asteuria ramosa</i> is not killed if it fails to infect: implications for coevolution. Ecology and Evolution, 2013, 3, 197-203.	1.9	20
22	Host nutrition alters the variance in parasite transmission potential. Biology Letters, 2013, 9, 20121145.	2.3	53
23	A shared mechanism of defense against predators and parasites: chitin regulation and its implications for lifeâ€history theory. Ecology and Evolution, 2013, 3, 5119-5126.	1.9	28
24	<i>Daphnia magna</i> shows reduced infection upon secondary exposure to a pathogen. Biology Letters, 2012, 8, 972-975.	2.3	37
25	Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex. BMC Evolutionary Biology, 2012, 12, 63.	3.2	47
26	Harnessing evolutionary biology to combat infectious disease. Nature Medicine, 2012, 18, 217-220.	30.7	23
27	Elevated haemocyte number is associated with infection and low fitness potential in wild <i>Daphnia magna</i> . Functional Ecology, 2012, 26, 434-440.	3.6	17
28	THE CELLULAR IMMUNE RESPONSE OFDAPHNIA MAGNAUNDER HOST-PARASITE GENETIC VARIATION AND VARIATION IN INITIAL DOSE. Evolution; International Journal of Organic Evolution, 2012, 66, 3287-3293.	2.3	21
29	Fecundity compensation and tolerance to a sterilizing pathogen in <i><scp>D</scp>aphnia</i> . Journal of Evolutionary Biology, 2012, 25, 1888-1896.	1.7	73
30	Candidate innate immune system gene expression in the ecological model Daphnia. Developmental and Comparative Immunology, 2011, 35, 1068-1077.	2.3	20
31	Identifying energy constraints to parasite resistance. Journal of Evolutionary Biology, 2011, 24, 224-229.	1.7	18
32	Genetic variation for maternal effects on parasite susceptibility. Journal of Evolutionary Biology, 2011, 24, 2357-2363.	1.7	43
33	Fitness consequences of immune responses: strengthening the empirical framework for ecoimmunology. Functional Ecology, 2011, 25, 5-17.	3.6	202
34	Dissecting the effect of a heterogeneous environment on the interaction between host and parasite fitness traits. Evolutionary Ecology, 2011, 25, 499-508.	1.2	16
35	Alternative splicing of the Anopheles gambiae Dscam gene in diverse Plasmodium falciparum infections. Malaria Journal, 2011, 10, 156.	2.3	49
36	Epidemiological, Evolutionary, and Coevolutionary Implications of Context-Dependent Parasitism. American Naturalist, 2011, 177, 510-521.	2.1	93

#	Article	IF	CITATIONS
37	Recent and Recurrent Selective Sweeps of the Antiviral RNAi Gene Argonaute-2 in Three Species of Drosophila. Molecular Biology and Evolution, 2011, 28, 1043-1056.	8.9	55
38	Successfully resisting a pathogen is rarely costly in Daphnia magna. BMC Evolutionary Biology, 2010, 10, 355.	3.2	29
39	Genetic variation in the cellular response of <i>Daphnia magna</i> (Crustacea: Cladocera) to its bacterial parasite. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3291-3297.	2.6	35
40	CRISPR-mediated phage resistance and the ghost of coevolution past. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2097-2103.	2.6	82
41	The Coevolution of Virulence: Tolerance in Perspective. PLoS Pathogens, 2010, 6, e1001006.	4.7	149
42	Immunity in a variable world. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 15-26.	4.0	315
43	The components of the Daphnia pulex immune system as revealed by complete genome sequencing. BMC Genomics, 2009, 10, 175.	2.8	93
44	Measuring parasite fitness under genetic and thermal variation. Heredity, 2009, 103, 102-109.	2.6	70
45	Nucleotide Polymorphism and Within-Gene Recombination in Daphnia magna and D. pulex, Two Cyclical Parthenogens. Genetics, 2009, 182, 313-323.	2.9	32
46	ProPhenolOxidase in Daphnia magna: cDNA sequencing and expression in relation to resistance to pathogens. Developmental and Comparative Immunology, 2009, 33, 674-680.	2.3	29
47	An ancient immunity gene duplication in Daphnia magna: RNA expression and sequence analysis of two nitric oxide synthase genes. Developmental and Comparative Immunology, 2009, 33, 1000-1010.	2.3	30
48	Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors. Malaria Journal, 2009, 8, 117.	2.3	24
49	Exploring the Molecular Landscape of Host-Parasite Coevolution. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 169-176.	1.1	7
50	Parasitism and breeding system variation in North American populations of Daphnia pulex. Ecological Research, 2008, 23, 235-240.	1.5	17
51	An animal model to evaluate the function and regulation of the adaptively evolving stress protein SEP53 in oesophageal bile damage responses. Cell Stress and Chaperones, 2008, 13, 375-385.	2.9	8
52	Studying immunity at the whole organism level. BioEssays, 2008, 30, 404-405.	2.5	28
53	Male threeâ€spined sticklebacks <i>Gasterosteus aculeatus</i> make antibiotic nests: a novel form of parental protection?. Journal of Fish Biology, 2008, 73, 2380-2389.	1.6	19
54	Temperatureâ€dependent costs of parasitism and maintenance of polymorphism under genotypeâ€byâ€environment interactions. Journal of Evolutionary Biology, 2008, 21, 1418-1427.	1.7	95

#	Article	IF	CITATIONS
55	The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae. BMC Evolutionary Biology, 2008, 8, 274.	3.2	47
56	The Dscam Homologue of the Crustacean Daphnia Is Diversified by Alternative Splicing Like in Insects. Molecular Biology and Evolution, 2008, 25, 1429-1439.	8.9	145
57	Parasite variation and the evolution of virulence in a <i>Daphnia-</i> microparasite system. Parasitology, 2008, 135, 303-308.	1.5	29
58	Deforestation and Vectorial Capacity of <i>Anopheles gambiae</i> Giles Mosquitoes in Malaria Transmission, Kenya. Emerging Infectious Diseases, 2008, 14, 1533-1538.	4.3	112
59	The causes and consequences of variation in offspring size: a case study using Daphnia. Journal of Evolutionary Biology, 2007, 20, 577-587.	1.7	28
60	Population genetics of Plasmodium resistance genes in Anopheles gambiae: no evidence for strong selection. Molecular Ecology, 2007, 16, 3497-3510.	3.9	31
61	Evidence for a cost of immunity when the crustacean <i>Daphnia magna</i> is exposed to the bacterial pathogen <i>Pasteuria ramosa</i> . Journal of Animal Ecology, 2007, 76, 1202-1207.	2.8	36
62	PARASITE-DRIVEN GENETIC CHANGE IN A NATURAL POPULATION OF DAPHNIA. Evolution; International Journal of Organic Evolution, 2007, 61, 796-803.	2.3	115
63	Adaptive Evolution of a Stress Response Protein. PLoS ONE, 2007, 2, e1003.	2.5	11
64	PARASITE-HOST SPECIFICITY: EXPERIMENTAL STUDIES ON THE BASIS OF PARASITE ADAPTATION. Evolution; International Journal of Organic Evolution, 2006, 60, 31.	2.3	26
65	The separate and combined effects of MHC genotype, parasite clone, and host gender on the course of malaria in mice. BMC Genetics, 2006, 7, 55.	2.7	13
66	PARASITE-HOST SPECIFICITY: EXPERIMENTAL STUDIES ON THE BASIS OF PARASITE ADAPTATION. Evolution; International Journal of Organic Evolution, 2006, 60, 31-38.	2.3	100
67	Parasite-mediated selection and the role of sex and diapause in Daphnia. Journal of Evolutionary Biology, 2006, 19, 1183-1189.	1.7	57
68	Testing the pluralist approach to sex: the influence of environment on synergistic interactions between mutation load and parasitism in Daphnia magna. Journal of Evolutionary Biology, 2006, 19, 1603-1611.	1.7	19
69	Natural Selection Drives Extremely Rapid Evolution in Antiviral RNAi Genes. Current Biology, 2006, 16, 580-585.	3.9	270
70	Empirical Support for Optimal Virulence in a Castrating Parasite. PLoS Biology, 2006, 4, e197.	5.6	154
71	Parasite-host specificity: experimental studies on the basis of parasite adaptation. Evolution; International Journal of Organic Evolution, 2006, 60, 31-8.	2.3	36
72	The evolution of immune-related genes from disease carrying mosquitoes: diversity in a peptidoglycan- and a thioester-recognizing protein. Insect Molecular Biology, 2005, 14, 599-605.	2.0	34

#	Article	IF	CITATIONS
73	Invertebrate immunity and the limits of mechanistic immunology. Nature Immunology, 2005, 6, 651-654.	14.5	240
74	HOST-PARASITE AND GENOTYPE-BY-ENVIRONMENT INTERACTIONS: TEMPERATURE MODIFIES POTENTIAL FOR SELECTION BY A STERILIZING PATHOGEN. Evolution; International Journal of Organic Evolution, 2005, 59, 70-80.	2.3	195
75	Genetic diversity and polyploidy in the cosmopolitan asexual ostracod Cypris pubera. Journal of Plankton Research, 2005, 27, 1287-1293.	1.8	11
76	A parasite-mediated life-history shift in Daphnia magna. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 505-509.	2.6	90
77	The Course of Malaria in Mice: Major Histocompatibility Complex (MHC) Effects, but No General MHC Heterozygote Advantage in Single-Strain Infections. Genetics, 2005, 170, 1427-1430.	2.9	29
78	Symposium Outcomes: Reconstructing the Network of Progressive Educators. Schools: Studies in Education, 2005, 2, 201-206.	0.2	0
79	HOST-PARASITE AND GENOTYPE-BY-ENVIRONMENT INTERACTIONS: TEMPERATURE MODIFIES POTENTIAL FOR SELECTION BY A STERILIZING PATHOGEN. Evolution; International Journal of Organic Evolution, 2005, 59, 70.	2.3	10
80	Strength training: Isometric training at a range of joint angles versus dynamic training. Journal of Sports Sciences, 2005, 23, 817-824.	2.0	54
81	Host-parasite and genotype-by-environment interactions: temperature modifies potential for selection by a sterilizing pathogen. Evolution; International Journal of Organic Evolution, 2005, 59, 70-80.	2.3	67
82	Evolutionary Dynamics of <i>Daphnia</i> and Their Microparasites. , 2004, , 222-240.		2
83	Testing Small Clutch Size Models with Daphnia. American Naturalist, 2004, 163, 880-887.	2.1	21
84	The effect of a pathogen epidemic on the genetic structure and reproductive strategy of the crustacean Daphnia magna. Ecology Letters, 2004, 7, 848-858.	6.4	59
85	Molecular Evolution of Daphnia Immunity Genes: Polymorphism in a Gram-Negative Binding Protein Gene and an ?-2-Macroglobulin Gene. Journal of Molecular Evolution, 2004, 59, 498-506.	1.8	45
86	THE CLEARANCE OF HIDDEN CESTODE INFECTION TRIGGERED BY AN INDEPENDENT ACTIVATION OF HOST DEFENSE IN A TELEOST FISH. Journal of Parasitology, 2004, 90, 1329-1331.	0.7	13
87	Ecological and evolutionary implications of immunological priming in invertebrates. Trends in Ecology and Evolution, 2004, 19, 58-60.	8.7	198
88	The Evolution of Virulence When Parasites Cause Host Castration and Gigantism. American Naturalist, 2004, 164, S19-S32.	2.1	205
89	Maternal Transfer of Strain-Specific Immunity in an Invertebrate. Current Biology, 2003, 13, 489-492.	3.9	311
90	The evolutionary significance of parasitism: do parasite-driven genetic dynamics occur ex silico?. Journal of Evolutionary Biology, 2002, 15, 1-9.	1.7	97

#	Article	IF	CITATIONS
91	Competitiveness and lifeâ€history characteristics of Daphnia with respect to susceptibility to a bacterial pathogen. Journal of Evolutionary Biology, 2002, 15, 796-802.	1.7	35
92	GENETIC VARIATION IN A HOST-PARASITE ASSOCIATION: POTENTIAL FOR COEVOLUTION AND FREQUENCY-DEPENDENT SELECTION. Evolution; International Journal of Organic Evolution, 2001, 55, 1136-1145.	2.3	443
93	TEMPORAL PATTERNS OF GENETIC VARIATION FOR RESISTANCE AND INFECTIVITY IN A DAPHNIA-MICROPARASITE SYSTEM. Evolution; International Journal of Organic Evolution, 2001, 55, 1146-1152.	2.3	69
94	TEMPORAL PATTERNS OF GENETIC VARIATION FOR RESISTANCE AND INFECTIVITY IN A DAPHNIA-MICROPARASITE SYSTEM. Evolution; International Journal of Organic Evolution, 2001, 55, 1146.	2.3	4
95	GENETIC VARIATION IN A HOST-PARASITE ASSOCIATION: POTENTIAL FOR COEVOLUTION AND FREQUENCY-DEPENDENT SELECTION. Evolution; International Journal of Organic Evolution, 2001, 55, 1136.	2.3	49
96	Sex, linkage disequilibrium and patterns of parasitism in three species of cyclically parthenogenetic Daphnia (Cladocera: Crustacea). Heredity, 2000, 85, 257-265.	2.6	18
97	The cause of parasitic infection in natural populations of Daphnia (Crustacea: Cladocera): the role of host genetics. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2037-2042.	2.6	78
98	Associations between parasitism and host genotype in natural populations ofDaphnia(Crustacea:) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50

99	Genetic characterization of an arctic zooplankter : insights into geographic polyploidy. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1363-1370.	2.6	29
100	Endemism and ecological islands: the ostracods from Jamaican bromeliads. Freshwater Biology, 1996, 36, 327-338.	2.4	38
101	Abundant asexuality in tropical freshwater ostracodes. Heredity, 1994, 73, 549-555.	2.6	23