
Josephine M Egan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6675910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genetics, 2010, 42, 105-116.	21.4	1,982
2	A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nature Genetics, 2012, 44, 659-669.	21.4	762
3	The Role of Incretins in Glucose Homeostasis and Diabetes Treatment. Pharmacological Reviews, 2008, 60, 470-512.	16.0	681
4	Modulation of taste sensitivity by GLPâ \in l signaling. Journal of Neurochemistry, 2008, 106, 455-463.	3.9	240
5	Age-Related Changes in Glucose Metabolism, Hyperglycemia, and Cardiovascular Risk. Circulation Research, 2018, 123, 886-904.	4.5	226
6	Resveratrol Prevents β-Cell Dedifferentiation in Nonhuman Primates Given a High-Fat/High-Sugar Diet. Diabetes, 2013, 62, 3500-3513.	0.6	122
7	Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Science Translational Medicine, 2018, 10, .	12.4	121
8	Cannabinoids Inhibit Insulin Receptor Signaling in Pancreatic Î ² -Cells. Diabetes, 2011, 60, 1198-1209.	0.6	112
9	Resveratrol and curcumin enhance pancreatic β-cell function by inhibiting phosphodiesterase activity. Journal of Endocrinology, 2014, 223, 107-117.	2.6	104
10	The endocrinology of taste receptors. Nature Reviews Endocrinology, 2015, 11, 213-227.	9.6	101
11	Ghrelin Is Produced in Taste Cells and Ghrelin Receptor Null Mice Show Reduced Taste Responsivity to Salty (NaCl) and Sour (Citric Acid) Tastants. PLoS ONE, 2010, 5, e12729.	2.5	93
12	Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 2021, 12, 24.	12.8	87
13	Cannabinoids Induce Pancreatic β-Cell Death by Directly Inhibiting Insulin Receptor Activation. Science Signaling, 2012, 5, ra23.	3.6	84
14	Human CB1 Receptor Isoforms, present in Hepatocytes and β-cells, are Involved in Regulating Metabolism. Scientific Reports, 2016, 6, 33302.	3.3	77
15	Absence of cannabinoid 1 receptor in beta cells protects against high-fat/high-sugar diet-induced beta cell dysfunction and inflammation in murine islets. Diabetologia, 2018, 61, 1470-1483.	6.3	69
16	Glucagon signaling modulates sweet taste responsiveness. FASEB Journal, 2010, 24, 3960-3969.	0.5	66
17	Insulin and Glucagon Regulate Pancreatic α-Cell Proliferation. PLoS ONE, 2011, 6, e16096.	2.5	66
18	Human Type II Taste Cells Express Angiotensin-Converting Enzyme 2 and Are Infected by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). American Journal of Pathology, 2021, 191, 1511-1519.	3.8	62

JOSEPHINE M EGAN

#	Article	IF	CITATIONS
19	Release of insulin produced by the choroid plexis is regulated by serotonergic signaling. JCI Insight, 2019, 4, .	5.0	60
20	Hormones in the naso-oropharynx: endocrine modulation of taste and smell. Trends in Endocrinology and Metabolism, 2009, 20, 163-170.	7.1	57
21	Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds. Cancer Medicine, 2015, 4, 245-252.	2.8	57
22	Age-Related Changes in Mouse Taste Bud Morphology, Hormone Expression, and Taste Responsivity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 336-344.	3.6	55
23	Notch signaling in pancreatic endocrine cell and diabetes. Biochemical and Biophysical Research Communications, 2010, 392, 247-251.	2.1	47
24	Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice. Molecular and Cellular Endocrinology, 2016, 423, 1-10.	3.2	46
25	GIP Contributes to Islet Trihormonal Abnormalities in Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2477-2485.	3.6	42
26	Identification of CB1/CB2 Ligands from <i>Zanthoxylum bungeanum</i> . Journal of Natural Products, 2013, 76, 2060-2064.	3.0	32
27	Pancreatic polypeptide inhibits somatostatin secretion. FEBS Letters, 2014, 588, 3233-3239.	2.8	28
28	Incretin secretion in humans is under the influence of cannabinoid receptors. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E359-E366.	3.5	27
29	Muscle cannabinoid 1 receptor regulates llâ€6 and myostatin expression, governing physical performance and wholeâ€body metabolism. FASEB Journal, 2019, 33, 5850-5863.	0.5	26
30	Exendin-4 Pharmacodynamics: Insights from the Hyperglycemic Clamp Technique. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 830-835.	2.5	24
31	Blockade of cannabinoid 1 receptor improves glucose responsiveness in pancreatic beta cells. Journal of Cellular and Molecular Medicine, 2018, 22, 2337-2345.	3.6	21
32	Dietary curcumin enhances insulin clearance in diet-induced obese mice via regulation of hepatic PI3K-AKT axis and IDE, and preservation of islet integrity. Nutrition and Metabolism, 2019, 16, 48.	3.0	21
33	Insulin Is Transcribed and Translated in Mammalian Taste Bud Cells. Endocrinology, 2018, 159, 3331-3339.	2.8	18
34	Roles of Hormones in Taste Signaling. Results and Problems in Cell Differentiation, 2011, 52, 115-137.	0.7	17
35	Cannabinoids Regulate Bcl-2 and Cyclin D2 Expression in Pancreatic Î ² Cells. PLoS ONE, 2016, 11, e0150981.	2.5	14
36	ldentification of novel mouse and rat CB1R isoforms and in silico modeling of human CB1R for peripheral cannabinoid therapeutics. Acta Pharmacologica Sinica, 2019, 40, 387-397.	6.1	14

JOSEPHINE M EGAN

#	Article	IF	CITATIONS
37	Pancreas++: Automated Quantification of Pancreatic Islet Cells in Microscopy Images. Frontiers in Physiology, 2013, 3, 482.	2.8	12
38	Hepatocyte cannabinoid 1 receptor nullification alleviates toxin-induced liver damage via NF-κB signaling. Cell Death and Disease, 2020, 11, 1044.	6.3	12
39	Endocannabinoids in the Islets of Langerhans: the ugly, the bad, and the good facts. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E174-E179.	3.5	8
40	Longitudinal trajectories and determinants of human fungiform papillae density. Aging, 2021, 13, 24989-25003.	3.1	7
41	Novel Human Insulin Isoforms and Cα-Peptide Product in Islets of Langerhans and Choroid Plexus. Diabetes, 2021, 70, 2947-2956.	0.6	6
42	Anti-Inflammatory and Pro-Autophagy Effects of the Cannabinoid Receptor CB2R: Possibility of Modulation in Type 1 Diabetes. Frontiers in Pharmacology, 2021, 12, 809965.	3.5	6
43	An Autonomous Cannabinoid System in Islets of Langerhans. Frontiers in Endocrinology, 2021, 12, 699661.	3.5	5
44	An inverse agonist of estrogen-related receptor Î ³ regulates 2-arachidonoylglycerol synthesis by modulating diacylglycerol lipase expression in alcohol-intoxicated mice. Archives of Toxicology, 2020, 94, 427-438.	4.2	4

4