David N Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6675359/publications.pdf Version: 2024-02-01

		2322	517
469	83,715	98	267
papers	citations	h-index	g-index
523 all docs	523 docs citations	523 times ranked	95086 citing authors

#	Article	IF	CITATIONS
1	NGS mismapping confounds the clinical interpretation of the <i>PRSS1</i> p.Ala16Val (c.47C>T) variant in chronic pancreatitis. Gut, 2022, 71, 841-842.	12.1	8
2	Trypsinogen (PRSS1 and PRSS2) gene dosage correlates with pancreatitis risk across genetic and transgenic studies: a systematic review and re-analysis. Human Genetics, 2022, 141, 1327-1338.	3.8	8
3	Distinct sequence features underlie microdeletions and gross deletions in the human genome. Human Mutation, 2022, 43, 328-346.	2.5	3
4	Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity. American Journal of Human Genetics, 2022, 109, 457-470.	6.2	29
5	The CEL-HYB1 Hybrid Allele Promotes Digestive Enzyme Misfolding and Pancreatitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 55-74.	4.5	8
6	Challenges in the diagnosis of neurofibromatosis type 1 (NF1) in young children facilitated by means of revised diagnostic criteria including genetic testing for pathogenic NF1 gene variants. Human Genetics, 2022, 141, 177-191.	3.8	29
7	Functionally deficient <i>TRPV6</i> variants contribute to hereditary and familial chronic pancreatitis. Human Mutation, 2022, 43, 228-239.	2.5	7
8	Verifying nomenclature of DNA variants in submitted manuscripts: Guidance for journals. Human Mutation, 2021, 42, 3-7.	2.5	10
9	A platform for curated products from novel open reading frames prompts reinterpretation of disease variants. Genome Research, 2021, 31, 327-336.	5.5	17
10	The reversion variant (p.Arg90Leu) at the evolutionarily adaptive p.Arg90 site in CELA3B predisposes to chronic pancreatitis. Human Mutation, 2021, 42, 385-391.	2.5	6
11	Scale and Scope of Gene-Alcohol Interactions in Chronic Pancreatitis: A Systematic Review. Genes, 2021, 12, 471.	2.4	9
12	Prioritization of schizophrenia risk genes from GWAS results by integrating multi-omics data. Translational Psychiatry, 2021, 11, 175.	4.8	10
13	Digenic Inheritance and Gene-Environment Interaction in a Patient With Hypertriglyceridemia and Acute Pancreatitis. Frontiers in Genetics, 2021, 12, 640859.	2.3	7
14	MutationTaster2021. Nucleic Acids Research, 2021, 49, W446-W451.	14.5	122
15	DNA Methylation, Deamination, and Translesion Synthesis Combine to Generate Footprint Mutations in Cancer Driver Genes in B-Cell Derived Lymphomas and Other Cancers. Frontiers in Genetics, 2021, 12, 671866.	2.3	4
16	Compensatory epistasis explored by molecular dynamics simulations. Human Genetics, 2021, 140, 1329-1342.	3.8	6
17	Common polymorphic <i>OTC</i> variants can act as genetic modifiers of enzymatic activity. Human Mutation, 2021, 42, 978-989.	2.5	6
18	The genetic structure of the Turkish population reveals high levels of variation and admixture. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42

#	Article	IF	CITATIONS
19	Splicing Outcomes of 5′ Splice Site GT>GC Variants That Generate Wild-Type Transcripts Differ Significantly Between Full-Length and Minigene Splicing Assays. Frontiers in Genetics, 2021, 12, 701652.	2.3	9
20	Classification of NF1 microdeletions and its importance for establishing genotype/phenotype correlations in patients with NF1 microdeletions. Human Genetics, 2021, 140, 1635-1649.	3.8	12
21	No Convincing Evidence to Support a Bimodal Age of Onset in Idiopathic Chronic Pancreatitis. Clinical Gastroenterology and Hepatology, 2021, , .	4.4	1
22	Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin. Nucleic Acids Research, 2021, 49, 221-243.	14.5	29
23	Chronic Pancreatitis: The True Pathogenic Culprit within the SPINK1 N34S-Containing Haplotype Is No Longer at Large. Genes, 2021, 12, 1683.	2.4	5
24	Atypical NF1 Microdeletions: Challenges and Opportunities for Genotype/Phenotype Correlations in Patients with Large NF1 Deletions. Genes, 2021, 12, 1639.	2.4	10
25	Identification of discriminative gene-level and protein-level features associated with pathogenic gain-of-function and loss-of-function variants. American Journal of Human Genetics, 2021, 108, 2301-2318.	6.2	21
26	Most unambiguous loss-of-function <i>CPA1</i> mutations are unlikely to predispose to chronic pancreatitis. Gut, 2020, 69, 785-786.	12.1	6
27	AVADA: toward automated pathogenic variant evidence retrieval directly from the full-text literature. Genetics in Medicine, 2020, 22, 362-370.	2.4	24
28	Role of the Common PRSS1-PRSS2 Haplotype in Alcoholic and Non-Alcoholic Chronic Pancreatitis: Meta- and Re-Analyses. Genes, 2020, 11, 1349.	2.4	14
29	Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications, 2020, 11, 5918.	12.8	305
30	Pathogenic and likely pathogenic variants in at least five genes account for approximately 3% of mild isolated nonsyndromic thrombocytopenia. Transfusion, 2020, 60, 2419-2431.	1.6	6
31	Developmental Gene Expression Differences between Humans and Mammalian Models. Cell Reports, 2020, 33, 108308.	6.4	46
32	EXT1 and EXT2 Variants in 22 Chinese Families With Multiple Osteochondromas: Seven New Variants and Potentiation of Preimplantation Genetic Testing and Prenatal Diagnosis. Frontiers in Genetics, 2020, 11, 607838.	2.3	4
33	AMELIE speeds Mendelian diagnosis by matching patient phenotype and genotype to primary literature. Science Translational Medicine, 2020, 12, .	12.4	60
34	5′ splice site GC>GT and GT>GC variants differ markedly in terms of their functionality and pathogenicity. Human Mutation, 2020, 41, 1358-1364.	2.5	7
35	Common homozygosity for predicted loss-of-function variants reveals both redundant and advantageous effects of dispensable human genes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13626-13636.	7.1	18
36	The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting. Human Genetics, 2020, 139, 1197-1207.	3.8	353

#	Article	IF	CITATIONS
37	Gene–environment interaction between APOA5Âc.553G>T and pregnancy in hypertriglyceridemia-induced acute pancreatitis. Journal of Clinical Lipidology, 2020, 14, 498-506.	1.5	11
38	Identification and functional characterization of a novel heterozygous missense variant in the <i>LPL</i> associated with recurrent hypertriglyceridemiaâ€induced acute pancreatitis in pregnancy. Molecular Genetics & Genomic Medicine, 2020, 8, e1048.	1.2	11
39	The Experimentally Obtained Functional Impact Assessments of 5' Splice Site GT>GC Variants Differ Markedly from Those Predicted. Current Genomics, 2020, 21, 56-66.	1.6	16
40	Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zoological Research, 2020, 41, 3-19.	2.1	19
41	Structure and function in the human genome. , 2020, , 1-41.		0
42	Mapping the human genome. , 2020, , 43-68.		0
43	Application of Economic Evaluation to Assess Feasibility for Reimbursement of Genomic Testing as Part of Personalized Medicine Interventions. Frontiers in Pharmacology, 2019, 10, 830.	3.5	26
44	RegulationSpotter: annotation and interpretation of extratranscriptic DNA variants. Nucleic Acids Research, 2019, 47, W106-W113.	14.5	17
45	Uganda Genome Resource Enables Insights into Population History and Genomic Discovery in Africa. Cell, 2019, 179, 984-1002.e36.	28.9	152
46	Extensive disruption of protein interactions by genetic variants across the allele frequency spectrum in human populations. Nature Communications, 2019, 10, 4141.	12.8	48
47	Compound Heterozygosity for Novel Truncating Variants in the LMOD3 Gene as the Cause of Polyhydramnios in Two Successive Fetuses. Frontiers in Genetics, 2019, 10, 835.	2.3	5
48	First estimate of the scale of canonical 5′ splice site GT>GC variants capable of generating wildâ€ŧype transcripts. Human Mutation, 2019, 40, 1856-1873.	2.5	25
49	Gene expression across mammalian organ development. Nature, 2019, 571, 505-509.	27.8	490
50	Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome. PLoS Computational Biology, 2019, 15, e1007112.	3.2	34
51	SeqTailor: a user-friendly webserver for the extraction of DNA or protein sequences from next-generation sequencing data. Nucleic Acids Research, 2019, 47, W623-W631.	14.5	15
52	<i>NAA10</i> polyadenylation signal variants cause syndromic microphthalmia. Journal of Medical Genetics, 2019, 56, 444-452.	3.2	28
53	Nucleotide Weight Matrices Reveal Ubiquitous Mutational Footprints of AID/APOBEC Deaminases in Human Cancer Genomes. Cancers, 2019, 11, 211.	3.7	15
54	S-CAP extends pathogenicity prediction to genetic variants that affect RNA splicing. Nature Genetics, 2019, 51, 755-763.	21.4	56

#	Article	IF	CITATIONS
55	Toward a clinical diagnostic pipeline for SPINK1 intronic variants. Human Genomics, 2019, 13, 8.	2.9	8
56	RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants. Genome Biology, 2019, 20, 254.	8.8	52
57	Blacklisting variants common in private cohorts but not in public databases optimizes human exome analysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 950-959.	7.1	52
58	Human Genomic Variants and Inherited Disease. , 2019, , 125-200.		2
59	Ultra-deep amplicon sequencing indicates absence of low-grade mosaicism with normal cells in patients with type-1 NF1 deletions. Human Genetics, 2019, 138, 73-81.	3.8	12
60	Clinical heterogeneity of mitochondrial NAD kinase deficiency caused by a <i>NADK2</i> start loss variant. American Journal of Medical Genetics, Part A, 2018, 176, 692-698.	1.2	23
61	Pronounced maternal parent-of-origin bias for type-1 NF1 microdeletions. Human Genetics, 2018, 137, 365-373.	3.8	12
62	<i>PRSS1</i> copy number variants and promoter polymorphisms in pancreatitis: common pathogenetic mechanism, different genetic effects. Gut, 2018, 67, 592-593.	12.1	12
63	Quantitative mapping of genetic similarity in human heritable diseases by shared mutations. Human Mutation, 2018, 39, 292-301.	2.5	8
64	FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics, 2018, 34, 511-513.	4.1	296
65	Biological and functional relevance of CASP predictions. Proteins: Structure, Function and Bioinformatics, 2018, 86, 374-386.	2.6	12
66	DNA polymerase ĥ mutational signatures are found in a variety of different types of cancer. Cell Cycle, 2018, 17, 348-355.	2.6	32
67	SPINK1 , PRSS1 , CTRC , and CFTR Genotypes Influence Disease Onset and Clinical Outcomes in Chronic Pancreatitis. Clinical and Translational Gastroenterology, 2018, 9, e204.	2.5	76
68	The sequencing and interpretation of the genome obtained from a Serbian individual. PLoS ONE, 2018, 13, e0208901.	2.5	3
69	Mis-splicing of the GALNS gene resulting from deep intronic mutations as a cause of Morquio a disease. BMC Medical Genetics, 2018, 19, 183.	2.1	14
70	The Genomic Medicine Alliance: A Global Effort to Facilitate the Introduction of Genomics into Healthcare in Developing Nations. , 2018, , 173-188.		1
71	CDG: An Online Server for Detecting Biologically Closest Disease-Causing Genes and its Application to Primary Immunodeficiency. Frontiers in Immunology, 2018, 9, 1340.	4.8	6
72	Phenotypic and genotypic overlap between mosaic NF2 and schwannomatosis in patients with multiple non-intradermal schwannomas. Human Genetics, 2018, 137, 543-552.	3.8	25

#	Article	IF	CITATIONS
73	Extreme clustering of type-1 NF1 deletion breakpoints co-locating with G-quadruplex forming sequences. Human Genetics, 2018, 137, 511-520.	3.8	13
74	Identification of compound heterozygous variants in the noncoding RNU4ATAC gene in a Chinese family with two successive foetuses with severe microcephaly. Human Genomics, 2018, 12, 3.	2.9	12
75	IMHOTEP—a composite score integrating popular tools for predicting the functional consequences of non-synonymous sequence variants. Nucleic Acids Research, 2017, 45, gkw886.	14.5	10
76	iRegNet3D: three-dimensional integrated regulatory network for the genomic analysis of coding and non-coding disease mutations. Genome Biology, 2017, 18, 10.	8.8	9
77	Emerging genotype–phenotype relationships in patients with large NF1 deletions. Human Genetics, 2017, 136, 349-376.	3.8	163
78	regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution. Human Genetics, 2017, 136, 1279-1289.	3.8	27
79	Mutational signatures and mutable motifs in cancer genomes. Briefings in Bioinformatics, 2017, 19, 1085-1101.	6.5	32
80	No significant enrichment of rare functionally defective CPA1 variants in a large Chinese idiopathic chronic pancreatitis cohort. Human Mutation, 2017, 38, 959-963.	2.5	19
81	ldentification of a functional enhancer variant within the chronic pancreatitisâ€essociated <i>SPINK1</i> c.101A>G (p.Asn34Ser)â€containing haplotype. Human Mutation, 2017, 38, 1014-1024.	2.5	18
82	The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Human Genetics, 2017, 136, 665-677.	3.8	1,106
83	In vitro and in silico evidence against a significant effect of the <i>SPINK1</i> c.194G>A variant on pre-mRNA splicing. Gut, 2017, 66, 2195-2196.	12.1	12
84	The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Human Genetics, 2017, 136, 129-148.	3.8	106
85	Severe infantile isolated exocrine pancreatic insufficiency caused by the complete functional loss of the <i>SPINK1 </i> gene. Human Mutation, 2017, 38, 1660-1665.	2.5	24
86	In vitro recapitulation of the site-specific editing (to wild-type) of mutant IDS mRNA transcripts, and the characterization of IDS protein translated from the edited mRNAs. Human Mutation, 2017, 38, 849-862.	2.5	0
87	Genomic Medicine Without Borders: Which Strategies Should Developing Countries Employ to Invest in Precision Medicine? A New "Fast-Second Winner―Strategy. OMICS A Journal of Integrative Biology, 2017, 21, 647-657.	2.0	29
88	Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants. Human Mutation, 2017, 38, 1336-1347.	2.5	37
89	In silico prioritization and further functional characterization of SPINK1 intronic variants. Human Genomics, 2017, 11, 7.	2.9	10
90	The NF1 somatic mutational landscape in sporadic human cancers. Human Genomics, 2017, 11, 13.	2.9	203

#	Article	IF	CITATIONS
91	ExonImpact: Prioritizing Pathogenic Alternative Splicing Events. Human Mutation, 2017, 38, 16-24.	2.5	12
92	Improving the in silico assessment of pathogenicity for compensated variants. European Journal of Human Genetics, 2017, 25, 2-7.	2.8	24
93	When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. Bioinformatics, 2017, 33, i389-i398.	4.1	53
94	Analysis of the Impact of Known SPINK1 Missense Variants on Pre-mRNA Splicing and/or mRNA Stability in a Full-Length Gene Assay. Genes, 2017, 8, 263.	2.4	10
95	Genomic variants in the FTO gene are associated with sporadic amyotrophic lateral sclerosis in Greek patients. Human Genomics, 2017, 11, 30.	2.9	21
96	An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome. BMC Bioinformatics, 2017, 18, 442.	2.6	34
97	Consideration of the haplotype diversity at nonallelic homologous recombination hotspots improves the precision of rearrangement breakpoint identification. Human Mutation, 2017, 38, 1711-1722.	2.5	9
98	Pathogenetics of Chronic Pancreatitis. , 2017, , 63-77.		0
99	mutation3D: Cancer Gene Prediction Through Atomic Clustering of Coding Variants in the Structural Proteome. Human Mutation, 2016, 37, 447-456.	2.5	94
100	Test Pricing and Reimbursement in Genomic Medicine: Towards a General Strategy. Public Health Genomics, 2016, 19, 352-363.	1.0	37
101	No Association Between CEL–HYB Hybrid Allele and Chronic Pancreatitis in Asian Populations. Gastroenterology, 2016, 150, 1558-1560.e5.	1.3	59
102	Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. Nucleic Acids Research, 2016, 44, 5673-5688.	14.5	117
103	Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536, 285-291.	27.8	9,051
104	Regulatory Single-Nucleotide Variant Predictor Increases Predictive Performance of Functional Regulatory Variants. Human Mutation, 2016, 37, 1137-1143.	2.5	13
105	Discovery and Functional Annotation of <i>PRSS1</i> Promoter Variants in Chronic Pancreatitis. Human Mutation, 2016, 37, 1149-1152.	2.5	5
106	M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nature Genetics, 2016, 48, 1581-1586.	21.4	654
107	Mining clinical attributes of genomic variants through assisted literature curation in Egas. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw096.	3.0	6
108	The Rise and Rise of Exome Sequencing. Public Health Genomics, 2016, 19, 315-324.	1.0	15

#	Article	IF	CITATIONS
109	The mutation significance cutoff: gene-level thresholds for variant predictions. Nature Methods, 2016, 13, 109-110.	19.0	249
110	A Role for Non-B DNA Forming Sequences in Mediating Microlesions Causing Human Inherited Disease. Human Mutation, 2016, 37, 65-73.	2.5	22
111	Assessing the Pathogenicity of Insertion and Deletion Variants with the Variant Effect Scoring Tool (VESTâ€Indel). Human Mutation, 2016, 37, 28-35.	2.5	101
112	Digging deeper into the intronic sequences of the <i>SPINK1</i> gene: TableÂ1. Gut, 2016, 65, 1055-1056.	12.1	10
113	Fine mapping of meiotic NAHR-associated crossovers causing large <i>NF1</i> deletions. Human Molecular Genetics, 2016, 25, 484-496.	2.9	15
114	Clarifying the clinical relevance of <i>SPINK1</i> intronic variants in chronic pancreatitis. Gut, 2016, 65, 884-886.	12.1	32
115	The Loss and Gain of Functional Amino Acid Residues Is a Common Mechanism Causing Human Inherited Disease. PLoS Computational Biology, 2016, 12, e1005091.	3.2	16
116	Disclosing the Hidden Structure and Underlying Mutational Mechanism of a Novel Type of Duplication CNV Responsible for Hereditary Multiple Osteochondromas. Human Mutation, 2015, 36, 758-763.	2.5	6
117	Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. Human Genomics, 2015, 9, 21.	2.9	39
118	Complex Multiple-Nucleotide Substitution Mutations Causing Human Inherited Disease Reveal Novel Insights into the Action of Translesion Synthesis DNA Polymerases. Human Mutation, 2015, 36, 1034-1038.	2.5	12
119	Genetics in Genomic Era. Genetics Research International, 2015, 2015, 1-2.	2.0	10
120	Concurrent Nucleotide Substitution Mutations in the Human Genome Are Characterized by a Significantly Decreased Transition/Transversion Ratio. Human Mutation, 2015, 36, 333-341.	2.5	9
121	Individualized Iterative Phenotyping for Genome-wide Analysis of Loss-of-Function Mutations. American Journal of Human Genetics, 2015, 96, 913-925.	6.2	66
122	The somatic autosomal mutation matrix in cancer genomes. Human Genetics, 2015, 134, 851-864.	3.8	16
123	Sequential data selection for predicting the pathogenic effects of sequence variation. , 2015, , .		1
124	Local DNA dynamics shape mutational patterns of mononucleotide repeats in human genomes. Nucleic Acids Research, 2015, 43, 5065-5080.	14.5	18
125	Remotely acting SMCHD1 gene regulatory elements: in silico prediction and identification of potential regulatory variants in patients with FSHD. Human Genomics, 2015, 9, 25.	2.9	0
126	DDIG-in: detecting disease-causing genetic variations due to frameshifting indels and nonsense mutations employing sequence and structural properties at nucleotide and protein levels. Bioinformatics, 2015, 31, 1599-1606.	4.1	52

#	Article	IF	CITATIONS
127	A Changing of the Guard at Human Genetics. Human Genetics, 2015, 134, 1-1.	3.8	Ο
128	The Evaluation of Tools Used to Predict the Impact of Missense Variants Is Hindered by Two Types of Circularity. Human Mutation, 2015, 36, 513-523.	2.5	283
129	Evaluation of copy number variation and gene expression in neurofibromatosis type-1-associated malignant peripheral nerve sheath tumours. Human Genomics, 2015, 9, 3.	2.9	17
130	An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics, 2015, 31, 1536-1543.	4.1	524
131	Characterization of 26 deletion CNVs reveals the frequent occurrence of micro-mutations within the breakpoint-flanking regions and frequent repair of double-strand breaks by templated insertions derived from remote genomic regions. Human Genetics, 2015, 134, 589-603.	3.8	25
132	Effect of predicted protein-truncating genetic variants on the human transcriptome. Science, 2015, 348, 666-669.	12.6	252
133	Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science, 2015, 348, 242-245.	12.6	326
134	A global reference for human genetic variation. Nature, 2015, 526, 68-74.	27.8	13,998
135	The human gene damage index as a gene-level approach to prioritizing exome variants. Proceedings of the United States of America, 2015, 112, 13615-13620.	7.1	213
136	Identification of cancer predisposition variants in apparently healthy individuals using a next-generation sequencing-based family genomics approach. Human Genomics, 2015, 9, 12.	2.9	18
137	Intra-individual plasticity of the TAZ gene leading to different heritable mutations in siblings with Barth syndrome. European Journal of Human Genetics, 2015, 23, 1708-1712.	2.8	4
138	Proteins linked to autosomal dominant and autosomal recessive disorders harbor characteristic rare missense mutation distribution patterns. Human Molecular Genetics, 2015, 24, 5995-6002.	2.9	40
139	Mutations Causing Complex Disease May under Certain Circumstances Be Protective in an Epidemiological Sense. PLoS ONE, 2015, 10, e0132150.	2.5	4
140	Mechanisms of Base Substitution Mutagenesis in Cancer Genomes. Genes, 2014, 5, 108-146.	2.4	49
141	Key challenges for nextâ€generation pharmacogenomics. EMBO Reports, 2014, 15, 472-476.	4.5	49
142	A Probabilistic Model to Predict Clinical Phenotypic Traits from Genome Sequencing. PLoS Computational Biology, 2014, 10, e1003825.	3.2	10
143	A Massively Parallel Pipeline to Clone DNA Variants and Examine Molecular Phenotypes of Human Disease Mutations. PLoS Genetics, 2014, 10, e1004819.	3.5	47
144	Critical appraisal of the views of healthcare professionals with respect to pharmacogenomics and personalized medicine in Greece. Personalized Medicine, 2014, 11, 15-26.	1.5	46

#	Article	IF	CITATIONS
145	Analysis of Crossover Breakpoints Yields New Insights into the Nature of the Gene Conversion Events Associated with Large <i>NF1</i> Deletions Mediated by Nonallelic Homologous Recombination. Human Mutation, 2014, 35, 215-226.	2.5	17
146	MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing. Genome Biology, 2014, 15, R19.	9.6	135
147	Population-specific differences in gene conversion patterns between human SUZ12 and SUZ12P are indicative of the dynamic nature of interparalog gene conversion. Human Genetics, 2014, 133, 383-401.	3.8	3
148	MutationTaster2: mutation prediction for the deep-sequencing age. Nature Methods, 2014, 11, 361-362.	19.0	3,203
149	Impact of human pathogenic micro-insertions and micro-deletions on post-transcriptional regulation. Human Molecular Genetics, 2014, 23, 3024-3034.	2.9	27
150	Elucidating Common Structural Features of Human Pathogenic Variations Using Large-Scale Atomic-Resolution Protein Networks. Human Mutation, 2014, 35, 585-593.	2.5	18
151	The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Human Genetics, 2014, 133, 1-9.	3.8	1,153
152	Bridging genomics research between developed and developing countries: the Genomic Medicine Alliance. Personalized Medicine, 2014, 11, 615-623.	1.5	22
153	A New and More Accurate Estimate of the Rate of Concurrent Tandem-Base Substitution Mutations in the Human Germline: â^¼0.4% of the Single-Nucleotide Substitution Mutation Rate. Human Mutation, 2014, 35, 392-394.	2.5	15
154	Diagnostic Exome Sequencing to Elucidate the Genetic Basis of Likely Recessive Disorders in Consanguineous Families. Human Mutation, 2014, 35, 1203-1210.	2.5	75
155	Ranking non-synonymous single nucleotide polymorphisms based on disease concepts. Human Genomics, 2014, 8, 11.	2.9	163
156	The emergence of the mitochondrial genome as a partial regulator of nuclear function is providing new insights into the genetic mechanisms underlying age-related complex disease. Human Genetics, 2014, 133, 435-458.	3.8	32
157	SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biology, 2014, 15, R80.	9.6	63
158	Deciphering next-generation pharmacogenomics: an information technology perspective. Open Biology, 2014, 4, 140071.	3.6	41
159	Identification of Large <i>NF1</i> Duplications Reciprocal to NAHR-Mediated Type-1 <i>NF1</i> Deletions. Human Mutation, 2014, 35, 1469-1475.	2.5	7
160	Genome-Wide Analysis of Copy Number Variation Identifies Candidate Gene Loci Associated with the Progression of Non-Alcoholic Fatty Liver Disease. PLoS ONE, 2014, 9, e95604.	2.5	30
161	Small deletions within the <i>RHD</i> coding sequence: a report of two novel mutational events and a survey of the underlying pathophysiologic mechanisms. Transfusion, 2013, 53, 206-210.	1.6	9
162	New clinical and molecular insights on Barth syndrome. Orphanet Journal of Rare Diseases, 2013, 8, 27.	2.7	35

#	Article	IF	CITATIONS
163	DDIG-in: discriminating between disease-associated and neutral non-frameshifting micro-indels. Genome Biology, 2013, 14, R23.	9.6	63
164	Identifying Mendelian disease genes with the Variant Effect Scoring Tool. BMC Genomics, 2013, 14, S3.	2.8	360
165	Human Gene Mutation in Inherited Disease. , 2013, , 1-48.		6
166	MuPIT interactive: webserver for mapping variant positions to annotated, interactive 3D structures. Human Genetics, 2013, 132, 1235-1243.	3.8	68
167	Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Human Genetics, 2013, 132, 1077-1130.	3.8	528
168	The Evolution of High-Throughput Sequencing Technologies: From Sanger to Single-Molecule Sequencing. , 2013, , 1-30.		0
169	Genetic tests obtainable through pharmacies: the good, the bad, and the ugly. Human Genomics, 2013, 7, 17.	2.9	44
170	Analysis of Features from Protein-protein Hetero-complex Structures to Predict Protein Interaction Interfaces Using Machine Learning. Procedia Technology, 2013, 10, 62-66.	1.1	3
171	Interpreting Secondary Cardiac Disease Variants in an Exome Cohort. Circulation: Cardiovascular Genetics, 2013, 6, 337-346.	5.1	70
172	Screening in silico predicted remotely acting NF1gene regulatory elements for mutations in patients with neurofibromatosis type 1. Human Genomics, 2013, 7, 18.	2.9	4
173	DNA structure matters. Genome Medicine, 2013, 5, 51.	8.2	5
174	From the periphery to centre stage: de novo single nucleotide variants play a key role in human genetic disease. Journal of Medical Genetics, 2013, 50, 203-211.	3.2	33
175	Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models. Human Mutation, 2013, 34, 57-65.	2.5	1,057
176	Integrating nextâ€generation sequencing into the diagnostic testing of inherited cancer predisposition. Clinical Genetics, 2013, 83, 2-6.	2.0	23
177	Clinical relevance of cancer genome sequencing. World Journal of Gastroenterology, 2013, 19, 2011.	3.3	16
178	A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Molecular Psychiatry, 2013, 18, 141-153.	7.9	85
179	Patterns and Mutational Signatures of Tandem Base Substitutions Causing Human Inherited Disease. Human Mutation, 2013, 34, 1119-1130.	2.5	34
180	Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics, 2013, 29, 1504-1510.	4.1	208

#	Article	IF	CITATIONS
181	CRAVAT: cancer-related analysis of variants toolkit. Bioinformatics, 2013, 29, 647-648.	4.1	140
182	Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease. PLoS Genetics, 2013, 9, e1003816.	3.5	34
183	Research and clinical applications of cancer genome sequencing. Current Opinion in Obstetrics and Gynecology, 2013, 25, 3-10.	2.0	14
184	Using Exome Data to Identify Malignant Hyperthermia Susceptibility Mutations. Anesthesiology, 2013, 119, 1043-1053.	2.5	69
185	Restoration of the Normal Splicing Pattern of the PLP1 Gene by Means of an Antisense Oligonucleotide Directed against an Exonic Mutation. PLoS ONE, 2013, 8, e73633.	2.5	12
186	A Conservative Assessment of the Major Genetic Causes of Idiopathic Chronic Pancreatitis: Data from a Comprehensive Analysis of PRSS1, SPINK1, CTRC and CFTR Genes in 253 Young French Patients. PLoS ONE, 2013, 8, e73522.	2.5	89
187	Interlocus gene conversion events introduce deleterious mutations into at least 1% of human genes associated with inherited disease. Genome Research, 2012, 22, 429-435.	5.5	30
188	regSNPs: a strategy for prioritizing regulatory single nucleotide substitutions. Bioinformatics, 2012, 28, 1879-1886.	4.1	13
189	The â€~sequence everything' approach and personalized clinical decision challenges. Expert Review of Molecular Diagnostics, 2012, 12, 319-322.	3.1	0
190	Exploring the somatic NF1 mutational spectrum associated with NF1 cutaneous neurofibromas. European Journal of Human Genetics, 2012, 20, 411-419.	2.8	25
191	Ascertainment and critical assessment of the views of the general public and healthcare professionals on nutrigenomics in Greece. Personalized Medicine, 2012, 9, 201-210.	1.5	20
192	The Human Gene Mutation Database (HGMD) and Its Exploitation in the Fields of Personalized Genomics and Molecular Evolution. Current Protocols in Bioinformatics, 2012, 39, Unit1.13.	25.8	198
193	How to distinguish genetically between an alleged father and his monozygotic twin: A thought experiment. Forensic Science International: Genetics, 2012, 6, e129-e130.	3.1	14
194	Exome sequencing: a transient technology for molecular diagnostics?. Expert Review of Molecular Diagnostics, 2012, 12, 211-214.	3.1	7
195	Dissecting the clinical phenotype associated with mosaic type-2 NF1 microdeletions. Neurogenetics, 2012, 13, 229-236.	1.4	20
196	Exome versus transcriptome sequencing in identifying coding region variants. Expert Review of Molecular Diagnostics, 2012, 12, 241-251.	3.1	43
197	Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (<i>NF1</i>) gene. Human Mutation, 2012, 33, 1687-1696.	2.5	21
198	Identification of recurrent type-2 <i>NF1</i> microdeletions reveals a mitotic nonallelic homologous recombination hotspot underlying a human genomic disorder. Human Mutation, 2012, 33, 1599-1609.	2.5	26

#	Article	IF	CITATIONS
199	Non-coding RNA ANRIL and the number of plexiform neurofibromas in patients with NF1microdeletions. BMC Medical Genetics, 2012, 13, 98.	2.1	11
200	â€~Sifting the significance from the data' - the impact of high-throughput genomic technologies on human genetics and health care. Human Genomics, 2012, 6, 11.	2.9	5
201	Genotype-phenotype associations in neurofibromatosis type 1 (NF1): an increased risk of tumor complications in patients with NF1splice-site mutations?. Human Genomics, 2012, 6, 12.	2.9	50
202	Molecular heterogeneity in malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1. Human Genomics, 2012, 6, 18.	2.9	21
203	An emerging role for microRNAs in NF1 tumorigenesis. Human Genomics, 2012, 6, 23.	2.9	16
204	A new era in the discovery of de novomutations underlying human genetic disease. Human Genomics, 2012, 6, 27.	2.9	20
205	Local sequence determinants of two in-frame triplet deletion/duplication hotspots in the RHD/RHCEgenes. Human Genomics, 2012, 6, 8.	2.9	2
206	An integrated map of genetic variation from 1,092 human genomes. Nature, 2012, 491, 56-65.	27.8	7,199
207	Gene discovery in familial cancer syndromes by exome sequencing: prospects for the elucidation of familial colorectal cancer type X. Modern Pathology, 2012, 25, 1055-1068.	5.5	35
208	Technological advances in DNA sequence enrichment and sequencing for germline genetic diagnosis. Expert Review of Molecular Diagnostics, 2012, 12, 159-173.	3.1	16
209	Deleterious- and Disease-Allele Prevalence in Healthy Individuals: Insights from Current Predictions, Mutation Databases, and Population-Scale Resequencing. American Journal of Human Genetics, 2012, 91, 1022-1032.	6.2	255
210	The Germline Mutational Spectrum in Neurofibromatosis Type 1 and Genotype–Phenotype Correlations. , 2012, , 115-134.		6
211	Microattribution and nanopublication as means to incentivize the placement of human genome variation data into the public domain. Human Mutation, 2012, 33, 1503-1512.	2.5	59
212	A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes. Science, 2012, 335, 823-828.	12.6	1,095
213	The yak genome and adaptation to life at high altitude. Nature Genetics, 2012, 44, 946-949.	21.4	708
214	Insights into hominid evolution from the gorilla genome sequence. Nature, 2012, 483, 169-175.	27.8	663
215	Transient hypermutability, chromothripsis and replication-based mechanisms in the generation of concurrent clustered mutations. Mutation Research - Reviews in Mutation Research, 2012, 750, 52-59.	5.5	25
216	Characterization of the nonallelic homologous recombination hotspot PRS3 associated with type-3 <i>NF1</i> deletions. Human Mutation, 2012, 33, 372-383.	2.5	28

#	Article	IF	CITATIONS
217	Tissue-specific differences in the proportion of mosaic large NF1 deletions are suggestive of a selective growth advantage of hematopoietic del(+/â^') stem cells. Human Mutation, 2012, 33, 541-550.	2.5	23
218	Microarray-based copy number analysis of neurofibromatosis type-1 (NF1)-associated malignant peripheral nerve sheath tumors reveals a role for Rho-GTPase pathway genes in NF1 tumorigenesis. Human Mutation, 2012, 33, 763-776.	2.5	44
219	Exome sequencing: Dual role as a discovery and diagnostic tool. Annals of Neurology, 2012, 71, 5-14.	5.3	157
220	NF1 Microdeletions and Their Underlying Mutational Mechanisms. , 2012, , 187-209.		10
221	The Somatic Mutational Spectrum of the NF1 Gene. , 2012, , 211-233.		3
222	Somatic Copy Number Alterations: Gene and Protein Expression Correlates in NF1-Associated Malignant Peripheral Nerve Sheath Tumors. , 2012, , 405-428.		0
223	Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques. Nature Biotechnology, 2011, 29, 1019-1023.	17.5	284
224	The functional spectrum of low-frequency coding variation. Genome Biology, 2011, 12, R84.	9.6	173
225	Critical appraisal of the private genetic and pharmacogenomic testing environment in Greece. Personalized Medicine, 2011, 8, 413-420.	1.5	20
226	Exploring the potential relevance of human-specific genes to complex disease. Human Genomics, 2011, 5, 99.	2.9	30
227	A meta-analysis of single base-pair substitutions in translational termination codons ('nonstop') Tj ETQq1 1 0.78	4314 rgBT 2.9	/Qverlock 10
228	Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations. Human Genomics, 2011, 5, 453.	2.9	3
229	Human genetics and genomics a decade after the release of the draft sequence of the human genome. Human Genomics, 2011, 5, 577.	2.9	86
230	Neurofibromatosis type 1-associated tumours: Their somatic mutational spectrum and pathogenesis. Human Genomics, 2011, 5, 623.	2.9	113
231	Local DNA sequence determinants of <i>FUT2</i> copy number variation. Transfusion, 2011, 51, 1359-1361.	1.6	3
232	Assessing the pathological relevance of SPINK1 promoter variants. European Journal of Human Genetics, 2011, 19, 1066-1073.	2.8	18
233	Mapping copy number variation by population-scale genome sequencing. Nature, 2011, 470, 59-65.	27.8	991
234	Variation in genome-wide mutation rates within and between human families. Nature Genetics, 2011, 43, 712-714.	21.4	525

#	Article	IF	CITATIONS
235	Delineating the Hemostaseome as an aid to individualize the analysis of the hereditary basis of thrombotic and bleeding disorders. Human Genetics, 2011, 130, 149-166.	3.8	12
236	Lionizing lyonization 50Âyears on. Human Genetics, 2011, 130, 167-168.	3.8	4
237	Molecular Genetic Analysis of the PLP1 Gene in 38 Families with PLP1-related disorders: Identification and Functional Characterization of 11 Novel PLP1 Mutations. Orphanet Journal of Rare Diseases, 2011, 6, 40.	2.7	32
238	Delineation of the clinical phenotype associated with non-mosaic type-2 NF1 deletions: two case reports. Journal of Medical Case Reports, 2011, 5, 577.	0.8	12
239	Meiotic recombination favors the spreading of deleterious mutations in human populations. Human Mutation, 2011, 32, 198-206.	2.5	37
240	Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Human Mutation, 2011, 32, 213-219.	2.5	106
241	Monozygotic twins discordant for neurofibromatosis type 1 due to a postzygotic NF1 gene mutation. Human Mutation, 2011, 32, E2134-E2147.	2.5	34
242	IDUA mutational profiling of a cohort of 102 European patients with mucopolysaccharidosis type I: identification and characterization of 35 novel α-L-iduronidase (IDUA) alleles. Human Mutation, 2011, 32, E2189-E2210.	2.5	66
243	Comparative analysis of germline and somatic microlesion mutational spectra in 17 human tumor suppressor genes. Human Mutation, 2011, 32, 620-632.	2.5	13
244	Single base-pair substitutions at the translation initiation sites of human genes as a cause of inherited disease. Human Mutation, 2011, 32, 1137-1143.	2.5	32
245	On the sequence-directed nature of human gene mutation: The role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Human Mutation, 2011, 32, 1075-1099.	2.5	99
246	Prediction of functional regulatory SNPs in monogenic and complex disease. Human Mutation, 2011, 32, 1183-1190.	2.5	21
247	Demographic history and rare allele sharing among human populations. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11983-11988.	7.1	589
248	A critical view of the general public's awareness and physicians' opinion of the trends and potential pitfalls of genetic testing in Greece. Personalized Medicine, 2011, 8, 551-561.	1.5	47
249	Non-B DNA-forming Sequences and WRN Deficiency Independently Increase the Frequency of Base Substitution in Human Cells. Journal of Biological Chemistry, 2011, 286, 10017-10026.	3.4	31
250	Loss of exon identity is a common mechanism of human inherited disease. Genome Research, 2011, 21, 1563-1571.	5.5	156
251	Functional intronic polymorphisms: Buried treasure awaiting discovery within our genes. Human Genomics, 2010, 4, 284.	2.9	192
252	An isolated case of lissencephaly caused by the insertion of a mitochondrial genome-derived DNA sequence into the 5' untranslated region of the PAFAH1B1 (LIS1) gene. Human Genomics, 2010, 4, 384.	2.9	10

#	Article	IF	CITATIONS
253	Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Human Genomics, 2010, 4, 406.	2.9	118
254	Prospects for the automated extraction of mutation data from the scientific literature. Human Genomics, 2010, 5, 1.	2.9	4
255	Characterisation of a functional intronic polymorphism in the human growth hormone (CHI) gene. Human Genomics, 2010, 4, 289.	2.9	41
256	Genomic rearrangements in inherited disease and cancer. Seminars in Cancer Biology, 2010, 20, 222-233.	9.6	140
257	Structure-based kernels for the prediction of catalytic residues and their involvement in human inherited disease. BMC Bioinformatics, 2010, 11, .	2.6	6
258	Extended runs of homozygosity at 17q11.2: an association with type-2 <i>NF1</i> deletions?. Human Mutation, 2010, 31, 325-334.	2.5	9
259	In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. Human Mutation, 2010, 31, 335-346.	2.5	57
260	Complete ascertainment of intragenic copy number mutations (CNMs) in the CFTR gene and its implications for CNM formation at other autosomal loci. Human Mutation, 2010, 31, 421-428.	2.5	31
261	Enigmatic In Vivo iduronate-2-sulfatase (IDS) mutant transcript correction to wild-type in Hunter syndrome. Human Mutation, 2010, 31, E1261-E1285.	2.5	17
262	A novel third type of recurrent NF1 microdeletion mediated by nonallelic homologous recombination between LRRC37B-containing low-copy repeats in 17q11.2. Human Mutation, 2010, 31, 742-751.	2.5	42
263	Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Human Mutation, 2010, 31, 631-655.	2.5	161
264	Intrachromosomal mitotic nonallelic homologous recombination is the major molecular mechanism underlying type-2 NF1 deletions. Human Mutation, 2010, 31, 1163-1173.	2.5	36
265	Identification and characterization of 15 novel GALC gene mutations causing Krabbe disease. Human Mutation, 2010, 31, E1894-E1914.	2.5	93
266	Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations. Human Mutation, 2010, 31, 1286-1293.	2.5	12
267	Is the NIH policy for sharing GWAS data running the risk of being counterproductive?. Investigative Genetics, 2010, 1, 3.	3.3	4
268	Legal and ethical consequences of international biobanking from a national perspective: the German BMB-EUCoop project. European Journal of Human Genetics, 2010, 18, 522-525.	2.8	16
269	GWAS: heritability missing in action?. European Journal of Human Genetics, 2010, 18, 859-861.	2.8	74
270	A map of human genome variation from population-scale sequencing. Nature, 2010, 467, 1061-1073.	27.8	7,209

#	Article	IF	CITATIONS
271	Revealing the human mutome. Clinical Genetics, 2010, 78, 310-320.	2.0	22
272	Gene Conversion in Human Genetic Disease. Genes, 2010, 1, 550-563.	2.4	16
273	Structure-based kernels for the prediction of catalytic residues and their involvement in human inherited disease. Bioinformatics, 2010, 26, 1975-1982.	4.1	15
274	Do Inherited Disease Genes Have Distinguishing Functional Characteristics?. Genetic Testing and Molecular Biomarkers, 2010, 14, 289-291.	0.7	4
275	Human Gene Mutation: Mechanisms and Consequences. , 2010, , 319-363.		6
276	Clinical characterisation of 29 neurofibromatosis type-1 patients with molecularly ascertained 1.4 Mb type-1 NF1 deletions. Journal of Medical Genetics, 2010, 47, 623-630.	3.2	148
277	Chromosomal Distribution of Disease Genes in the Human Genome. Genetic Testing and Molecular Biomarkers, 2010, 14, 441-446.	0.7	3
278	Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Research, 2009, 19, 381-394.	5.5	284
279	Elucidation of the complex structure and origin of the human trypsinogen locus triplication. Human Molecular Genetics, 2009, 18, 3605-3614.	2.9	22
280	Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics, 2009, 25, 2744-2750.	4.1	691
281	Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian karyotype evolution. BMC Evolutionary Biology, 2009, 9, 84.	3.2	54
282	A gene conversion hotspot in the human growth hormone (<i>GH1</i>) gene promoter. Human Mutation, 2009, 30, 239-247.	2.5	13
283	Identification and molecular characterization of six novel mutations in the UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTG) gene in patients with mucolipidosis III gamma. Human Mutation, 2009, 30, 978-984.	2.5	26
284	Gene conversion causing human inherited disease: Evidence for involvement of non-B-DNA-forming sequences and recombination-promoting motifs in DNA breakage and repair. Human Mutation, 2009, 30, 1189-1198.	2.5	63
285	Closely spaced multiple mutations as potential signatures of transient hypermutability in human genes. Human Mutation, 2009, 30, 1435-1448.	2.5	51
286	Molecular characterization of 22 novel UDP-N-acetylglucosamine-1-phosphate transferase α- and β-subunit (<i>CNPTAB</i>) gene mutations causing mucolipidosis types IIα/β and IIIα/β in 46 patients. Human Mutation, 2009, 30, E956-E973.	2.5	38
287	Air pollution and mutations in the germline: are humans at risk?. Human Genetics, 2009, 125, 119-130.	3.8	20
288	STREGA: a â€~How-To' guide for reporting genetic associations. Human Genetics, 2009, 125, 117-118.	3.8	5

#	Article	IF	CITATIONS
289	Cruciform-forming inverted repeats appear to have mediated many of the microinversions that distinguish the human and chimpanzee genomes. Chromosome Research, 2009, 17, 469-483.	2.2	31
290	Mechanisms of Loss of Heterozygosity in Neurofibromatosis Type 1-Associated Plexiform Neurofibromas. Journal of Investigative Dermatology, 2009, 129, 615-621.	0.7	42
291	The Human Gene Mutation Database: 2008 update. Genome Medicine, 2009, 1, 13.	8.2	774
292	The Human Gene Mutation Database: providing a comprehensive central mutation database for molecular diagnostics and personalised genomics. Human Genomics, 2009, 4, 69.	2.9	151
293	Molecular mechanisms of chromosomal rearrangement during primate evolution. Chromosome Research, 2008, 16, 41-56.	2.2	68
294	A meta-analysis of nonsense mutations causing human genetic disease. Human Mutation, 2008, 29, 1037-1047.	2.5	348
295	Two sisters with Rett syndrome and non-identical paternally-derived microdeletions in the MECP2 gene. Genomic Medicine, 2008, 2, 77-81.	0.3	4
296	Copy number variations in the NF1 gene region are infrequent and do not predispose to recurrent type-1 deletions. European Journal of Human Genetics, 2008, 16, 572-580.	2.8	22
297	Detection of two Alu insertions in the CFTR gene. Journal of Cystic Fibrosis, 2008, 7, 37-43.	0.7	38
298	Growth hormone (GH1) gene variation and the growth hormone receptor (GHR) exon 3 deletion polymorphism in a West-African population. Molecular and Cellular Endocrinology, 2008, 296, 18-25.	3.2	16
299	Mosaicism in sporadic neurofibromatosis type 1: variations on a theme common to other hereditary cancer syndromes?. Journal of Medical Genetics, 2008, 45, 622-631.	3.2	71
300	Comparative analysis of copy number variation in primate genomes. Cytogenetic and Genome Research, 2008, 123, 288-296.	1.1	5
301	Preface. Cytogenetic and Genome Research, 2008, 123, 5-6.	1.1	2
302	Abundance and length of simple repeats in vertebrate genomes are determined by their structural properties. Genome Research, 2008, 18, 1545-1553.	5.5	87
303	Human Gene Mutation Database: towards a comprehensive central mutation database. Journal of Medical Genetics, 2007, 45, 124-126.	3.2	90
304	Chromosomal speciation of humans and chimpanzees revisited: studies of DNA divergence within inverted regions. Cytogenetic and Genome Research, 2007, 116, 53-60.	1.1	13
305	Co-inheritance of a novel deletion of the entire SPINK1 gene with a CFTR missense mutation (L997F) in a family with chronic pancreatitis. Molecular Genetics and Metabolism, 2007, 92, 168-175.	1.1	25
306	Gain-of-glycosylation mutations. Current Opinion in Genetics and Development, 2007, 17, 245-251.	3.3	65

#	Article	IF	CITATIONS
307	Type 2 NF1 Deletions Are Highly Unusual by Virtue of the Absence of Nonallelic Homologous Recombination Hotspots and an Apparent Preference for Female Mitotic Recombination. American Journal of Human Genetics, 2007, 81, 1201-1220.	6.2	60
308	Evolutionary and Biomedical Insights from the Rhesus Macaque Genome. Science, 2007, 316, 222-234.	12.6	1,283
309	Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Human Mutation, 2007, 28, 150-158.	2.5	324
310	Understanding the recent evolution of the human genome: insights from human-chimpanzee genome comparisons. Human Mutation, 2007, 28, 99-130.	2.5	98
311	Diversity of cystathionine β-synthase haplotypes bearing the most common homocystinuria mutation c.833T>C: a possible role for gene conversion. Human Mutation, 2007, 28, 255-264.	2.5	20
312	Gene conversion: mechanisms, evolution and human disease. Nature Reviews Genetics, 2007, 8, 762-775.	16.3	576
313	A legal framework for biobanking: the German experience. European Journal of Human Genetics, 2007, 15, 528-532.	2.8	17
314	Compound heterozygosity for two novel mutations (1203insG/Y1456X) in the von Willebrand factor gene causing type 3 von Willebrand disease. Haemophilia, 2007, 13, 645-648.	2.1	4
315	Structural divergence between the human and chimpanzee genomes. Human Genetics, 2007, 120, 759-778.	3.8	49
316	Searching for potential microRNA-binding site mutations amongst known disease-associated 3′ UTR variants. Genomic Medicine, 2007, 1, 29-33.	0.3	7
317	Mechanism of Alu integration into the human genome. Genomic Medicine, 2007, 1, 9-17.	0.3	16
318	Molecular cytogenetic characterization of two independent karyotypic anomalies in a patient with severe mental retardation and juvenile idiopathic arthritis. Genomic Medicine, 2007, 1, 65-73.	0.3	0
319	A novel Alu-mediated 61-kb deletion of the von Willebrand factor (VWF) gene whose breakpoints co-locate with putative matrix attachment regions. Blood Cells, Molecules, and Diseases, 2006, 36, 385-391.	1.4	19
320	The chimpanzee-specific pericentric inversions that distinguish humans and chimpanzees have identical breakpoints in Pan troglodytes and Pan paniscus. Genomics, 2006, 87, 39-45.	2.9	20
321	Assessing Radiation-Associated Mutational Risk to the Germline: Repetitive DNA Sequences as Mutational Targets and Biomarkers. Radiation Research, 2006, 165, 249-268.	1.5	45
322	Utilization of a cryptic noncanonical donor splice site in the KRT14 gene causes a mild form of epidermolysis bullosa simplex. British Journal of Dermatology, 2006, 155, 201-203.	1.5	7
323	Gross genomic rearrangements involving deletions in the CFTR gene: characterization of six new events from a large cohort of hitherto unidentified cystic fibrosis chromosomes and meta-analysis of the underlying mechanisms. European Journal of Human Genetics, 2006, 14, 567-576.	2.8	77
324	Polymorphic micro-inversions contribute to the genomic variability of humans and chimpanzees. Human Genetics, 2006, 119, 103-112.	3.8	17

#	Article	IF	CITATIONS
325	Identification of large-scale human-specific copy number differences by inter-species array comparative genomic hybridization. Human Genetics, 2006, 119, 185-198.	3.8	35
326	Genetic variation at the growth hormone (GH1) and growth hormone receptor (GHR) loci as a risk factor for hypertension and stroke. Human Genetics, 2006, 119, 527-540.	3.8	29
327	A systematic analysis of disease-associated variants in the $3\hat{a}\in^2$ regulatory regions of human protein-coding genes I: general principles and overview. Human Genetics, 2006, 120, 1-21.	3.8	135
328	Characterization of the human lineage-specific pericentric inversion that distinguishes human chromosome 1 from the homologous chromosomes of the great apes. Human Genetics, 2006, 120, 126-138.	3.8	17
329	Complex patterns of copy number variation at sites of segmental duplications: an important category of structural variation in the human genome. Human Genetics, 2006, 120, 270-284.	3.8	68
330	A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3′ UTR variants. Human Genetics, 2006, 120, 301-333.	3.8	125
331	Origin of the prevalentSFTPBindel g.1549C > GAA (121ins2) mutation causing surfactant protein B (SP-Ł deficiency. American Journal of Medical Genetics, Part A, 2006, 140A, 62-69.	³⁾ 1.2	23
332	Long homopurine*homopyrimidine sequences are characteristic of genes expressed in brain and the pseudoautosomal region. Nucleic Acids Research, 2006, 34, 2663-2675.	14.5	60
333	LINE-1 Endonuclease-Dependent Retrotranspositional Events Causing Human Genetic Disease: Mutation Detection Bias and Multiple Mechanisms of Target Gene Disruption. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-9.	3.0	51
334	In silico discrimination of single nucleotide polymorphisms and pathological mutations in human gene promoter regions by means of local DNA sequence context and regularity. In Silico Biology, 2006, 6, 23-34.	0.9	15
335	The Human Gene Mutation Database (HGMD) and Its Exploitation in the Study of Mutational Mechanisms. Current Protocols in Bioinformatics, 2005, 12, 1.13.1-1.13.20.	25.8	50
336	Metaâ€Analysis of gross insertions causing human genetic disease: Novel mutational mechanisms and the role of replication slippage. Human Mutation, 2005, 25, 207-221.	2.5	148
337	Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nature Genetics, 2005, 37, 692-700.	21.4	198
338	Early onset seizures and Rett-like features associated with mutations in CDKL5. European Journal of Human Genetics, 2005, 13, 1113-1120.	2.8	160
339	Gonosomal Mosaicism for a Nonsense Mutation (R1947X) in the NF1 Gene in Segmental Neurofibromatosis Type 1. Journal of Investigative Dermatology, 2005, 125, 463-466.	0.7	68
340	Breakpoint analysis of the pericentric inversion distinguishing human chromosome 4 from the homologous chromosome in the chimpanzee (<i>Pan troglodytes</i>). Human Mutation, 2005, 25, 45-55.	2.5	47
341	Complex gene rearrangements caused by serial replication slippage. Human Mutation, 2005, 26, 125-134.	2.5	88
342	Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the role of local DNA sequence complexity. Human Mutation, 2005, 26, 205-213.	2.5	136

#	Article	IF	CITATIONS
343	Intrachromosomal serial replication slippage in <i>trans</i> gives rise to diverse genomic rearrangements involving inversions. Human Mutation, 2005, 26, 362-373.	2.5	62
344	Molecular characterisation of the pericentric inversion that distinguishes human chromosome 5 from the homologous chimpanzee chromosome. Human Genetics, 2005, 117, 168-176.	3.8	27
345	A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Human Genetics, 2005, 117, 411-427.	3.8	206
346	Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16. Genome Research, 2005, 15, 1232-1242.	5.5	42
347	Gross rearrangements of the MECP2 gene are found in both classical and atypical Rett syndrome patients. Journal of Medical Genetics, 2005, 43, 451-456.	3.2	62
348	Neurofibromatosis Type 1: A Common Familial Cancer Syndrome. , 2004, , 285-310.		2
349	A Novel Dysfunctional Growth Hormone Variant (Ile179Met) Exhibits a Decreased Ability to Activate the Extracellular Signal-Regulated Kinase Pathway. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 1068-1075.	3.6	53
350	Breakpoints of gross deletions coincide with non-B DNA conformations. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14162-14167.	7.1	184
351	Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 2004, 428, 493-521.	27.8	1,943
352	Functional analysis of polymorphic variation within the promoter and 5? untranslated region of the neurofibromatosis type 1 (NF1) gene. American Journal of Medical Genetics Part A, 2004, 131A, 227-231.	2.4	9
353	Characterization of the somatic mutational spectrum of the neurofibromatosis type 1 (NF1) gene in neurofibromatosis patients with benign and malignant tumors. Human Mutation, 2004, 23, 134-146.	2.5	97
354	Gross rearrangement breakpoint database (GRaBD?). Human Mutation, 2004, 23, 219-221.	2.5	24
355	Genomic rearrangements in theCFTRgene: Extensive allelic heterogeneity and diverse mutational mechanisms. Human Mutation, 2004, 23, 343-357.	2.5	115
356	Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biology, 2004, 5, R47.	9.6	116
357	Detection of NF1 Mutations Utilizing the Protein Truncation Test (PTT). , 2003, 217, 315-328.		3
358	Three different pathological lesions in the NF1 gene originating de novo in a family with neurofibromatosis type 1. Human Genetics, 2003, 112, 12-17.	3.8	24
359	Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. Human Genetics, 2003, 112, 303-309.	3.8	114
360	Meta-analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity. Human Mutation, 2003, 21, 28-44.	2.5	112

#	Article	lF	CITATIONS
361	Human growth hormone 1 (GH1) gene expression: Complex haplotype-dependent influence of polymorphic variation in the proximal promoter and locus control region. Human Mutation, 2003, 21, 408-423.	2.5	99
362	Novel mutations of the growth hormone 1 (GH1) gene disclosed by modulation of the clinical selection criteria for individuals with short stature. Human Mutation, 2003, 21, 424-440.	2.5	106
363	Human Gene Mutation Database (HGMD [®]): 2003 update. Human Mutation, 2003, 21, 577-581.	2.5	1,571
364	Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends. Human Mutation, 2003, 22, 245-251.	2.5	98
365	Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs. Human Mutation, 2003, 22, 229-244.	2.5	214
366	Prenatal Exclusion of Severe Factor VII Deficiency. Journal of Pediatric Hematology/Oncology, 2003, 25, 418-420.	0.6	13
367	A rare complex DNA rearrangement in the murine Steel gene results in exon duplication and a lethal phenotype. Blood, 2003, 102, 3548-3555.	1.4	5
368	THE EVOLUTION OF THE VERTEBRATE Î ² -GLOBIN GENE PROMOTER. Evolution; International Journal of Organic Evolution, 2002, 56, 224.	2.3	2
369	Molecular diagnosis of facioscapulohumeral muscular dystrophy. Expert Review of Molecular Diagnostics, 2002, 2, 160-171.	3.1	28
370	Assessing the relative importance of the biophysical properties of amino acid substitutions associated with human genetic disease. Human Mutation, 2002, 20, 98-109.	2.5	39
371	Proposed guidelines for papers describing DNA polymorphism-disease associations. Human Genetics, 2002, 110, 207-208.	3.8	114
372	THE EVOLUTION OF THE VERTEBRATE ?-GLOBIN GENE PROMOTER. Evolution; International Journal of Organic Evolution, 2002, 56, 224-232.	2.3	7
373	Human gene mutation in pathology and evolution. Journal of Inherited Metabolic Disease, 2002, 25, 157-182.	3.6	38
374	Human growth hormone I gene expression is influenced in a complex haplotype-dependent fashion by polymorphic variation in both the proximal promoter and the locus control region. Journal of Pediatric Endocrinology and Metabolism, 2002, 15 Suppl 5, 1429.	0.9	0
375	Estimating the Efficacy and Efficiency of Cascade Genetic Screening. American Journal of Human Genetics, 2001, 69, 361-370.	6.2	62
376	The Frequency of Inherited Disorders Database. Human Genetics, 2001, 108, 72-74.	3.8	6
377	Human type I hair keratin pseudogene ? hHaA has functional orthologs in the chimpanzee and gorilla: evidence for recent inactivation of the human gene after the Pan-Homo divergence. Human Genetics, 2001, 108, 37-42.	3.8	87
378	Evaluation of denaturing high performance liquid chromatography (DHPLC) for the mutational analysis of the neurofibromatosis type 1 (NF1) gene. Human Genetics, 2001, 109, 487-497.	3.8	71

#	Article	IF	CITATIONS
379	Molecular analysis of the 5′-flanking region of the neurofibromatosis type 1 (NF1) gene: identification of five sequence variants. Clinical Genetics, 2001, 57, 221-224.	2.0	12
380	Resolution of a mispaired secondary structure intermediate could account for a novel micro-insertion/deletion (387 insA/del 8 bp) in the PYGM gene causing McArdle's disease. Clinical Genetics, 2001, 59, 48-51.	2.0	15
381	Human Gene Mutation Database?A biomedical information and research resource. Human Mutation, 2000, 15, 45-51.	2.5	241
382	Identification of an intronic regulatory element in the human protein C (PROC) gene. Human Genetics, 2000, 107, 458-465.	3.8	20
383	Hypermethylation of the neurofibromatosis type 1 (NF1) gene promoter is not a common event in the inactivation of the NF1 gene in NF1-specific tumours. Human Genetics, 2000, 107, 33-39.	3.8	13
384	Molecular genetic analysis of severe protein C deficiency. Human Genetics, 2000, 106, 646-653.	3.8	13
385	Molecular analysis of the genotype-phenotype relationship in factor X deficiency. Human Genetics, 2000, 106, 249-257.	3.8	71
386	Long-read sequence analysis of the MECP2 gene in Rett syndrome patients: correlation of disease severity with mutation type and location. Human Molecular Genetics, 2000, 9, 1119-1129.	2.9	245
387	Promoter shuffling has occurred during the evolution of the vertebrate growth hormone gene. Gene, 2000, 254, 9-18.	2.2	19
388	Molecular genetic analysis of severe proteinÂC deficiency. Human Genetics, 2000, 106, 646-653.	3.8	37
389	Hypermethylation of the neurofibromatosis type 1 (NF1) gene promoter is not a common event in the inactivation of the NF1 gene in NF1-specific tumours. Human Genetics, 2000, 107, 33-39.	3.8	30
390	Disease-causing mutations in the human genome. European Journal of Pediatrics, 2000, 159, S173-S178.	2.7	64
391	Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53. Human Genetics, 1999, 104, 15-22.	3.8	16
392	Evolution of the proximal promoter region of the mammalian growth hormone gene. Gene, 1999, 237, 143-151.	2.2	34
393	Gross deletions of the neurofibromatosis type 1 (NF1) gene are predominantly of maternal origin and commonly associated with a learning disability, dysmorphic features and developmental delay. Human Genetics, 1998, 102, 591-597.	3.8	171
394	Variation of site-specific methylation patterns in the factor VIII (F8C) gene in human sperm DNA. Human Genetics, 1998, 103, 228-233.	3.8	7
395	The molecular genetics of growth hormone deficiency. Human Genetics, 1998, 103, 255-272.	3.8	148
396	Neighboring-Nucleotide Effects on the Rates of Germ-Line Single-Base-Pair Substitution in Human Genes. American Journal of Human Genetics, 1998, 63, 474-488.	6.2	291

#	Article	IF	CITATIONS
397	The human gene mutation database. Nucleic Acids Research, 1998, 26, 285-287.	14.5	231
398	p53 mutations, benzo[a]pyrene and lung cancer. Mutagenesis, 1998, 13, 319-320.	2.6	26
399	The human gene mutation database. Trends in Genetics, 1997, 13, 121-122.	6.7	249
400	Homology modelling of the catalytic domain of early mammalian protein C: evolution of structural features. Human Genetics, 1997, 101, 37-42.	3.8	5
401	Inherited Factor VII Deficiency: Molecular Genetics and Pathophysiology. Thrombosis and Haemostasis, 1997, 78, 151-160.	3.4	103
402	Inherited Factor X Deficiency: Molecular Genetics and Pathophysiology. Thrombosis and Haemostasis, 1997, 78, 161-172.	3.4	71
403	[14]Analysis of promoter mutations causing human genetic disease. Methods in Molecular Genetics, 1996, 8, 261-277.	0.6	0
404	Molecular reconstruction and homology modelling of the catalytic domain of the common ancestor of the haemostatic vitamin-K-dependent serine proteinases. Human Genetics, 1996, 98, 351-370.	3.8	14
405	Mutational and functional analysis of the neurofibromatosis type 1 (NF1) gene. Human Genetics, 1996, 99, 88-92.	3.8	105
406	Single base-pair substitutions in pathology and evolution: Two sides to the same coin. Human Mutation, 1996, 8, 23-31.	2.5	23
407	Evidence for Cultured Human Vascular Smooth Muscle Cell Heterogeneity: Isolation of Clonal Cells and Study of their Growth Characteristics. Thrombosis and Haemostasis, 1996, 75, 854-858.	3.4	38
408	Ectopic Transcript Analysis Indicates that Allelic Exclusion is an Important Cause of Type I Protein C Deficiency in Patients with Nonsense and Frameshift Mutations in the PROC Gene. Thrombosis and Haemostasis, 1996, 75, 870-876.	3.4	7
409	Somatic spectrum of cancer-associated single basepair substitutions in the TP53 gene is determined mainly by endogenous mechanisms of mutation and by selection. Human Mutation, 1995, 5, 48-57.	2.5	56
410	Prothrombin cleavage by human vascular smooth muscle cells: A potential alternative pathway to the coagulation cascade. Journal of Cellular Biochemistry, 1995, 59, 514-528.	2.6	8
411	The mutational demography of protein C deficiency. Human Genetics, 1995, 96, 142-146.	3.8	10
412	A novel missense mutation (Thr176?lle) at the putative hinge of the neo N-terminus of activated protein C. Human Genetics, 1995, 95, 447-50.	3.8	2
413	Core database. Nature, 1995, 374, 402-402.	27.8	8
414	Population differences in the frequency of the factor V Leiden variant among people with clinically symptomatic protein C deficiency Journal of Medical Genetics, 1995, 32, 543-545.	3.2	25

#	Article	IF	CITATIONS
415	Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition. Nucleic Acids Research, 1994, 22, 3511-3533.	14.5	112
416	Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene, second edition. Nucleic Acids Research, 1994, 22, 4851-4868.	14.5	56
417	Disruption of a binding site for hepatocyte nuclear factor 1 in the protein C gene promoter is associated with hereditary thrombophilia. Human Molecular Genetics, 1994, 3, 2147-2152.	2.9	29
418	Determinants of the factor IX mutational spectrum in haemophilia B: an analysis of missense mutations using a multi-domain molecular model of the activated protein. Human Genetics, 1994, 94, 594-608.	3.8	20
419	11 The molecular genetics of familial venous thrombosis. Best Practice and Research: Clinical Haematology, 1994, 7, 637-674.	1.1	12
420	Ectopic (Illegitimate) Transcription: New Possibilities for the Analysis and Diagnosis of Human Genetic Disease. Annals of Medicine, 1994, 26, 9-14.	3.8	41
421	Screening for mutations in the antithrombin III gene causing recurrent venous thrombosis by single-strand conformation polymorphism analysis. Human Mutation, 1993, 2, 324-326.	2.5	14
422	Human Gene Mutations Affecting RNA Processing and Translation. Annals of Medicine, 1993, 25, 11-17.	3.8	116
423	Detection of missense mutations by single-strand conformational polymorphism (SSCP) analysis in five dysfunctional variants of coagulation factor VII. Human Molecular Genetics, 1993, 2, 1355-1359.	2.9	30
424	Regulatory Mutations and Human Genetic Disease. Annals of Medicine, 1992, 24, 427-437.	3.8	26
425	Molecular Genetic Approaches to the Analysis and Diagnosis of Human Inherited Disease: An Overview. Annals of Medicine, 1992, 24, 29-42.	3.8	17
426	De novo splice site mutation in the antithrombin III (AT3) gene causing recurrent venous thrombosis: Demonstration of exon skipping by ectopic transcript analysis. Genomics, 1992, 13, 1359-1361.	2.9	33
427	Single-strand conformation polymorphism (SSCP) analysis of exon 11 of the CFTR gene reliably detects more than one third of non-?F508 mutations in German cystic fibrosis patients. Human Genetics, 1992, 88, 283-7.	3.8	13
428	The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: Causes and consequences. Human Genetics, 1992, 90, 41-54.	3.8	1,182
429	Protein C deficiency and thromboembolism: recurrent mutation at Arg 306 in the protein C gene. Human Genetics, 1992, 88, 586-588.	3.8	8
430	Prenatal exclusion of haemophilia a and carrier testing by direct detection of a disease lesion. Prenatal Diagnosis, 1992, 12, 861-866.	2.3	2
431	A novel missense mutation in the antithrombin III gene (Ser349→Pro) causing recurrent venous thrombosis. Human Genetics, 1992, 88, 707-708.	3.8	5
432	A single base-pair deletion in the protein C gene causing recurrent thromboembolism. Thrombosis Research, 1991, 61, 335-340.	1.7	6

#	Article	IF	CITATIONS
433	Late-onset homozygous protein C deficiency. Lancet, The, 1991, 338, 575-576.	13.7	32
434	Report of the DNA committee and catalogues of cloned and mapped genes, markers formatted for PCR and DNA polymorphisms (Part 1 of 27). Cytogenetic and Genome Research, 1991, 58, 1190-1211.	1.1	78
435	The molecular genetics of familial venous thrombosis. Blood Reviews, 1991, 5, 55-70.	5.7	13
436	Carrier detection in haemophilia A by direct analysis of factor VIII gene lesions. Human Genetics, 1991, 87, 99-100.	3.8	2
437	Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Human Genetics, 1991, 86, 425-41.	3.8	438
438	Mechanisms of insertional mutagenesis in human genes causing genetic disease. Human Genetics, 1991, 87, 409-15.	3.8	119
439	A comprehensive list of cloned human DNA sequences–1990 update. Nucleic Acids Research, 1991, 19, 2111-2126.	14.5	4
440	The Molecular Genetics of Platelet Membrane Proteins and their Inherited Disorders. Platelets, 1991, 2, 59-67.	2.3	0
441	The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Human Genetics, 1990, 85, 55-74.	3.8	358
442	Report of the DNA committee and catalogues of cloned and mapped genes and DNA polymorphisms (Part 1 of 14). Cytogenetic and Genome Research, 1990, 55, 457-472.	1,1	50
443	Mspl RFLP in the human heparin cofactor II (HCF2) gene. Nucleic Acids Research, 1990, 18, 1664-1664.	14.5	3
444	A comprehensive list of cloned human DNA sequences. Nucleic Acids Research, 1990, 18, 2413-2547.	14.5	6
445	The effect of replication errors on the mismatch analysis of PCR-amplified DNA. Nucleic Acids Research, 1990, 18, 973-978.	14.5	47
446	Molecular genetic analysis of a novel form of haemophilia a characterized by the variable expression of factor VIII. Thrombosis Research, 1990, 59, 871-877.	1.7	7
447	Protein C London 1: recurrent mutation at Arg 169 (CGG—TGG) in the protein C gene causing thrombosis. Nucleic Acids Research, 1989, 17, 10513-10513.	14.5	18
448	Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Human Genetics, 1989, 83, 181-188.	3.8	303
449	Diagnosis of genetic disease using recombinant DNA. Second edition. Human Genetics, 1989, 83, 307-334.	3.8	27
450	The CpG dinucleotide and human genetic disease. Human Genetics, 1988, 78, 151-155.	3.8	932

#	Article	IF	CITATIONS
451	DNA polymorphism and the study of disease associations. Human Genetics, 1988, 78, 299-312.	3.8	98
452	Down's syndrome and the molecular biology of chromosome 21. Progress in Neurobiology, 1988, 30, 507-530.	5.7	32
453	Precursor-product relationship between vitellogenin and the yolk proteins as derived from the complete sequence of aXenopusvitellogenin gene. Nucleic Acids Research, 1987, 15, 4737-4760.	14.5	123
454	Molecular genetic approaches to the analysis of human ophthalmic disease. Eye, 1987, 1, 699-721.	2.1	3
455	The distribution of the dinucleotide CpG and cytosine methylation in the vitellogenin gene family. Journal of Molecular Evolution, 1987, 25, 107-115.	1.8	16
456	Localization of a human heat-shock HSP 70 gene sequence to chromosome 6 and detection of two other loci by somatic-cell hybrid and restriction fragment length polymorphism analysis. Human Genetics, 1987, 75, 123-128.	3.8	66
457	Regional localization and characterization of a DNA segment on the long arm of chromosome 21. Human Genetics, 1987, 75, 129-135.	3.8	8
458	Diagnosis of genetic disease using recombinant DNA. Human Genetics, 1986, 73, 1-11.	3.8	71
459	Human gene cloning: the storm before the lull?. Nature, 1986, 322, 119-119.	27.8	8
460	An estimate of unique DNA sequence heterozygosity in the human genome. Human Genetics, 1985, 69, 201-205.	3.8	298
461	DNA methylation and CpG suppression. Cell Differentiation, 1985, 17, 199-205.	0.4	59
462	A list of cloned human DNA sequences-Supplement. Human Genetics, 1984, 67, 111-114.	3.8	13
463	DNA restriction fragment length polymorphisms and heterozygosity in the human genome. Human Genetics, 1984, 66, 1-16.	3.8	155
464	Restriction fragment length polymorphisms at the human parathyroid hormone gene locus. Human Genetics, 1984, 67, 428-431.	3.8	68
465	The Pattern of DNA Methylation in the Î-Crystallin Genes in Transdifferentiating Neural Retina Cultures. Differentiation, 1983, 24, 33-38.	1.9	13
466	A list of cloned human DNA sequences. Human Genetics, 1983, 65, 19-26.	3.8	14
467	Eukaryotic DNA methylation. Human Genetics, 1983, 64, 315-333.	3.8	193
468	Unmethlated domains in vertebrate DNA. Nucleic Acids Research, 1983, 11, 647-658.	14.5	174

#	Article	IF	CITATIONS
469	Chicken lens δ-crystallin gene expression and methylation in several non-lens tissues. Nucleic Acids Research, 1983, 11, 2513-2527.	14.5	36