
Achraf Al Faraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6675019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shedding Light on the Direct and Indirect Impact of the COVID-19 Pandemic on the Lebanese Radiographers or Radiologic Technologists: A Crisis within Crises. Healthcare (Switzerland), 2021, 9, 362.	2.0	6
2	Correlation of Kidney Size on Computed Tomography with GFR, Creatinine and HbA1C for an Accurate Diagnosis of Patients with Diabetes and/or Chronic Kidney Disease. Diagnostics, 2021, 11, 789.	2.6	3
3	The History, Efficacy, and Safety of Potential Therapeutics: A Narrative Overview of the Complex Life of COVID-19. International Journal of Environmental Research and Public Health, 2021, 18, 955.	2.6	6
4	Anti-VCAM-1 and Anti-IL4Rα Aptamer-Conjugated Super Paramagnetic Iron Oxide Nanoparticles for Enhanced Breast Cancer Diagnosis and Therapy. Molecules, 2020, 25, 3437.	3.8	21
5	Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics, 2020, 10, 5932-5942.	10.0	108
6	siRNA Conjugated Nanoparticles—A Next Generation Strategy to Treat Lung Cancer. International Journal of Molecular Sciences, 2019, 20, 6088.	4.1	65
7	Effect of polyethylene glycol surface charge functionalization of SWCNT on the in vitro and in vivo nanotoxicity and biodistribution monitored noninvasively using MRI. Toxicology Mechanisms and Methods, 2019, 29, 233-243.	2.7	8
8	Metabolomics Based Profiling of Dexamethasone Side Effects in Rats. Frontiers in Pharmacology, 2018, 9, 46.	3.5	75
9	Blocking Interleukin-4 Receptor α Using Polyethylene Glycol Functionalized Superparamagnetic Iron Oxide Nanocarriers to Inhibit Breast Cancer Cell Proliferation. Cancer Research and Treatment, 2017, 49, 322-329.	3.0	9
10	Specific targeting and noninvasive magnetic resonance imaging of an asthma biomarker in the lung using polyethylene glycol functionalized magnetic nanocarriers. Contrast Media and Molecular Imaging, 2016, 11, 172-183.	0.8	13
11	SWCNTs as novel theranostic nanocarriers for cancer diagnosis and therapy: towards safe translation to the clinics. Nanomedicine, 2016, 11, 1431-1445.	3.3	16
12	Alternative approaches for the treatment of airway diseases: focus on nanoparticle medicine. Clinical and Experimental Allergy, 2016, 46, 1033-1042.	2.9	23
13	A novel anti-IL4Rα nanoparticle efficiently controls lung inflammation during asthma. Experimental and Molecular Medicine, 2016, 48, e262-e262.	7.7	31
14	Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. Journal of Controlled Release, 2016, 225, 240-251.	9.9	62
15	Specific targeting and noninvasive imaging of breast cancer stem cells using single-walled carbon nanotubes as novel multimodality nanoprobes. Nanomedicine, 2016, 11, 31-46.	3.3	50
16	Magnetic Targeting and Delivery of Drug-Loaded SWCNTs Theranostic Nanoprobes to Lung Metastasis in Breast Cancer Animal Model: Noninvasive Monitoring Using Magnetic Resonance Imaging. Molecular Imaging and Biology, 2016, 18, 315-324.	2.6	24
17	Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. International Journal of Nanomedicine, 2015, 10, 157.	6.7	82
18	Sodium-22-radiolabeled silica nanoparticles as new radiotracer for biomedical applications: in vivo positron emission tomography imaging, biodistribution, and biocompatibility. International Journal of Nanomedicine, 2015, 10, 6293.	6.7	14

Achraf Al Faraj

#	Article	IF	CITATIONS
19	3D Visualization of iron oxide nanoparticles in MRI of inflammatory model. Journal of Visualization, 2015, 18, 563-570.	1.8	4
20	Preferential magnetic targeting of carbon nanotubes to cancer sites: noninvasive tracking using MRI in a murine breast cancer model. Nanomedicine, 2015, 10, 931-948.	3.3	42
21	Intrapulmonary administration of bone-marrow derived M1/M2 macrophages to enhance the resolution of LPS-induced lung inflammation: noninvasive monitoring using free-breathing MR and CT imaging protocols. BMC Medical Imaging, 2015, 15, 16.	2.7	15
22	Effect of surface coating on the biocompatibility and <i>in vivo</i> MRI detection of iron oxide nanoparticles after intrapulmonary administration. Nanotoxicology, 2015, 9, 825-834.	3.0	36
23	MR imaging and targeting of a specific alveolar macrophage subpopulation in LPS-induced COPD animal model using antibody-conjugated magnetic nanoparticles. International Journal of Nanomedicine, 2014, 9, 1491.	6.7	60
24	Enhanced magnetic delivery of superparamagnetic iron oxide nanoparticles to the lung monitored using noninvasive MR. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	5
25	Preferential Macrophage Recruitment and Polarization in LPS-Induced Animal Model for COPD: Noninvasive Tracking Using MRI. PLoS ONE, 2014, 9, e90829.	2.5	31
26	Preferential magnetic nanoparticle uptake by bone marrow derived macrophages sub-populations: effect of surface coating on polarization, toxicity, and in vivo MRI detection. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	12
27	Realâ€ŧime highâ€෦esolution magnetic resonance tracking of macrophage subpopulations in a murine inflammation model: a pilot study with a commercially available cryogenic probe. Contrast Media and Molecular Imaging, 2013, 8, 193-203.	0.8	27
28	Endothelial Cell–derived Microparticles Loaded with Iron Oxide Nanoparticles: Feasibility of MR Imaging Monitoring in Mice. Radiology, 2012, 263, 169-178.	7.3	38
29	In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. International Journal of Nanomedicine, 2011, 6, 351.	6.7	61
30	Positive contrast with therapeutic iron nanoparticles at 4.7ÂT. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2011, 24, 259-265.	2.0	2
31	Highly constrained backprojection for improving dynamic ³ He MR ventilation imaging in rats. Contrast Media and Molecular Imaging, 2010, 5, 276-285.	0.8	1
32	Long-term follow-up of lung biodistribution and effect of instilled SWCNTs using multiscale imaging techniques. Nanotechnology, 2010, 21, 175103.	2.6	27
33	In Vivo Imaging of Carbon Nanotube Biodistribution Using Magnetic Resonance Imaging. Nano Letters, 2009, 9, 1023-1027.	9.1	111
34	Longitudinal3He and proton imaging of magnetite biodistribution in a rat model of instilled nanoparticles. Magnetic Resonance in Medicine, 2008, 59, 1298-1303.	3.0	18
35	Dirhenium decacarbonyl-loaded PLLA nanoparticles: Influence of neutron irradiation and preliminary in vivo administration by the TMT technique. International Journal of Pharmaceutics, 2008, 348, 125-136.	5.2	29
36	Elaboration of PLLA-based superparamagnetic nanoparticles: Characterization, magnetic behaviour study and in vitro relaxivity evaluation. International Journal of Pharmaceutics, 2007, 338, 248-257.	5.2	73