Martin K Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6674789/publications.pdf Version: 2024-02-01

	117625	175258
3,825	34	52
citations	h-index	g-index
153	153	1350
docs citations	times ranked	citing authors
	citations 153	3,825 34 citations h-index 153 153

#	Article	IF	CITATIONS
1	Parasite faecal egg counts in equine veterinary practice. Equine Veterinary Education, 2022, 34, 584-591.	0.6	9
2	Evaluation of risk factors affecting strongylid egg shedding on Hungarian horse farms. Veterinary Parasitology: Regional Studies and Reports, 2022, 27, 100663.	0.5	4
3	Parasite dynamics in untreated horses through one calendar year. Parasites and Vectors, 2022, 15, 50.	2.5	12
4	World association for the advancement of veterinary parasitology (WAAVP): Third edition of guideline for evaluating the efficacy of equine anthelmintics. Veterinary Parasitology, 2022, 303, 109676.	1.8	22
5	How to publish a great scientific paper – A guide for publishing successfully in Veterinary Parasitology. Veterinary Parasitology, 2022, 304, 109697.	1.8	1
6	World association for the advancement of veterinary parasitology (WAAVP) guideline for the evaluation of the efficacy of anthelmintics in food-producing and companion animals: general guidelines. Veterinary Parasitology, 2022, 304, 109698.	1.8	14
7	Equine strongylids: Ivermectin efficacy and fecal egg shedding patterns. Parasitology Research, 2022, 121, 1691-1697.	1.6	11
8	Reflections and future directions for continued development and refinement of guidelines for anthelmintic efficacy studies. Veterinary Parasitology, 2022, 307-308, 109741.	1.8	0
9	Monitoring equine ascarid and cyathostomin parasites: Evaluating health parameters under different treatment regimens. Equine Veterinary Journal, 2021, 53, 902-910.	1.7	12
10	A repeatable and quantitative DNA metabarcoding assay to characterize mixed strongyle infections in horses. International Journal for Parasitology, 2021, 51, 183-192.	3.1	36
11	Comparative studies on faecal egg counting techniques used for the detection of gastrointestinal parasites of equines: A systematic review. Current Research in Parasitology and Vector-borne Diseases, 2021, 1, 100046.	1.9	7
12	The pelvic flexure separates distinct microbial communities in the equine hindgut. Scientific Reports, 2021, 11, 4332.	3.3	1
13	Precision and spatial variation of cyathostomin mucosal larval counts. Veterinary Parasitology, 2021, 290, 109349.	1.8	5
14	The effect of analyst training on fecal egg counting variability. Parasitology Research, 2021, 120, 1363-1370.	1.6	16
15	Yeast Particle Encapsulation of Scaffolded Terpene Compounds for Controlled Terpene Release. Foods, 2021, 10, 1207.	4.3	6
16	An inactivated bacterium (paraprobiotic) expressing Bacillus thuringiensis Cry5B as a therapeutic for Ascaris and Parascaris spp. infections in large animals. One Health, 2021, 12, 100241.	3.4	8
17	Development and performance of an automated fecal egg count system for small ruminant strongylids. Veterinary Parasitology, 2021, 295, 109442.	1.8	5
18	What makes a good fecal egg count technique?. Veterinary Parasitology, 2021, 296, 109509.	1.8	23

#	Article	IF	CITATIONS
19	Diagnosing Strongylus vulgaris in pooled fecal samples. Veterinary Parasitology, 2021, 296, 109494.	1.8	4
20	Molecular detection of Strongyloides sp. in Australian Thoroughbred foals. Parasites and Vectors, 2021, 14, 444.	2.5	5
21	Three-year study to evaluate an anthelmintic treatment regimen with reduced treatment frequency in horses on two study sites in Belgium. Veterinary Parasitology, 2021, 298, 109538.	1.8	7
22	Prevalence of anthelmintic resistant cyathostomins in Prince Edward Island, Canada. Veterinary Parasitology: Regional Studies and Reports, 2021, 26, 100629.	0.5	3
23	Helminth infections in Italian donkeys: <i>Strongylus vulgaris</i> more common than <i>Dictyocaulus arnfieldi</i> . Journal of Helminthology, 2021, 95, e4.	1.0	2
24	Feasibility of selective anthelmintic therapy to horses in tropical conditions: the Cuban scenario. Tropical Animal Health and Production, 2021, 53, 545.	1.4	1
25	Cyathostomin resistance to moxidectin and combinations of anthelmintics in Australian horses. Parasites and Vectors, 2021, 14, 597.	2.5	27
26	Effects of sample homogenizing on the performance of an automated strongylid egg counting system. Veterinary Parasitology, 2021, 300, 109623.	1.8	3
27	Limited strongyle parasite occurrence in horses kept in an arid environment. Equine Veterinary Education, 2020, 32, 37-40.	0.6	3
28	Dealing with double trouble: Combination deworming against double-drug resistant cyathostomins. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 12, 28-34.	3.4	5
29	Importation of macrocyclic lactone resistant cyathostomins on a US thoroughbred farm. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 99-104.	3.4	41
30	Diagnostic performance of McMaster, Wisconsin, and automated egg counting techniques for enumeration of equine strongyle eggs in fecal samples. Veterinary Parasitology, 2020, 284, 109199.	1.8	21
31	Comparative Analysis of Intestinal Helminth Infections in Colic and Non-Colic Control Equine Patients. Animals, 2020, 10, 1916.	2.3	11
32	The P-glycoprotein repertoire of the equine parasitic nematode Parascaris univalens. Scientific Reports, 2020, 10, 13586.	3.3	16
33	Meta-analysis of cyathostomin species-specific prevalence and relative abundance in domestic horses from 1975–2020: emphasis on geographical region and specimen collection method. Parasites and Vectors, 2020, 13, 509.	2.5	33
34	Cytokine and goblet cell gene expression in equine cyathostomin infection and larvicidal anthelmintic therapy. Parasite Immunology, 2020, 42, e12709.	1.5	6
35	Ascarids exposed: a method for <i>in vitro</i> drug exposure and gene expression analysis of anthelmintic naĀ ⁻ ve <i>Parascaris</i> spp. Parasitology, 2020, 147, 659-666.	1.5	7
36	Parasite Occurrence and Parasite Management in Swedish Horses Presenting with Gastrointestinal Disease—A Case–Control Study. Animals, 2020, 10, 638.	2.3	24

#	Article	IF	CITATIONS
37	Reduced efficacy of ivermectin and moxidectin against Parascaris spp. in foals from Argentina. Veterinary Parasitology: Regional Studies and Reports, 2020, 20, 100388.	0.5	8
38	Climate change is likely to increase the development rate of anthelmintic resistance in equine cyathostomins in New Zealand. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 73-79.	3.4	11
39	Parasite Control Programs. , 2020, , 1669-1693.e5.		Ο
40	Risk factors for equine intestinal parasite infections and reduced efficacy of pyrantel embonate against Parascaris sp Veterinary Parasitology, 2019, 273, 52-59.	1.8	21
41	Pixel by pixel: real-time observation and quantification of passive flotation speeds of three common equine endoparasite egg types. International Journal for Parasitology, 2019, 49, 885-892.	3.1	6
42	The importance of anthelmintic efficacy monitoring: results of an outreach effort. Parasitology Research, 2019, 118, 2877-2883.	1.6	11
43	Managing anthelmintic resistance in cyathostomin parasites: Investigating the benefits of refugia-based strategies. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 10, 118-124.	3.4	24
44	Encysted cyathostomin larval counts: Mucosal digestion revisited. Veterinary Parasitology, 2019, 273, 86-89.	1.8	1
45	Modelling the development of anthelmintic resistance in cyathostomin parasites: The importance of genetic and fitness parameters. Veterinary Parasitology, 2019, 269, 28-33.	1.8	9
46	Systematic review of gastrointestinal nematodes of horses from Australia. Parasites and Vectors, 2019, 12, 188.	2.5	38
47	A model for the dynamics of the parasitic stages of equine cyathostomins. Veterinary Parasitology, 2019, 268, 53-60.	1.8	14
48	Anthelmintic efficacy of single active and combination products against commonly occurring parasites in foals. Veterinary Parasitology, 2019, 268, 46-52.	1.8	15
49	The effect of climate, season, and treatment intensity on anthelmintic resistance in cyathostomins: A modelling exercise. Veterinary Parasitology, 2019, 269, 7-12.	1.8	21
50	The effect of counting duration on quantitative fecal egg count test performance. Veterinary Parasitology: X, 2019, 276, 100020.	2.7	11
51	Long live the worms: methods for maintaining and assessing the viability of intestinal stages of <i>Parascaris</i> spp. <i>in vitro</i> . Parasitology, 2019, 146, 685-693.	1.5	4
52	Combination deworming for the control of double-resistant cyathostomin parasites – short and long term consequences. Veterinary Parasitology, 2018, 251, 112-118.	1.8	13
53	Parasite control strategies used by equine owners in the United States: A national survey. Veterinary Parasitology, 2018, 250, 45-51.	1.8	35
54	Evaluation of the mucosal inflammatory responses to equine cyathostomins in response to anthelmintic treatment. Veterinary Immunology and Immunopathology, 2018, 199, 1-7.	1.2	16

#	Article	IF	CITATIONS
55	Anthelmintic therapy of equine cyathostomin nematodes – larvicidal efficacy, egg reappearance period, and drug resistance. International Journal for Parasitology, 2018, 48, 97-105.	3.1	52
56	Nonstrangulating intestinal infarctions associated with <i>Strongylus vulgaris</i> : Clinical presentation and treatment outcomes of 30 horses (2008–2016). Equine Veterinary Journal, 2018, 50, 474-480.	1.7	36
57	Management practices associated with strongylid parasite prevalence on horse farms in rural counties of Kentucky. Veterinary Parasitology: Regional Studies and Reports, 2018, 14, 25-31.	0.5	8
58	Effects of homogenizing methods on accuracy and precision of equine strongylid egg counts. Veterinary Parasitology, 2018, 261, 91-95.	1.8	17
59	In vivo and in vitro studies of Cry5B and nicotinic acetylcholine receptor agonist anthelmintics reveal a powerful and unique combination therapy against intestinal nematode parasites. PLoS Neglected Tropical Diseases, 2018, 12, e0006506.	3.0	23
60	Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. Nature Communications, 2018, 9, 2945.	12.8	56
61	Anthelmintic efficacy against equine strongyles in the United States. Veterinary Parasitology, 2018, 259, 53-60.	1.8	17
62	Equine parasite control and the role of national legislation – A multinational questionnaire survey. Veterinary Parasitology, 2018, 259, 6-12.	1.8	22
63	First report of anthelmintic resistance of equine cyathostomins in Cuba. Veterinary Parasitology: Regional Studies and Reports, 2018, 13, 220-223.	0.5	6
64	Determination of the specific gravity of eggs of equine strongylids, Parascaris spp., and Anoplocephala perfoliata. Veterinary Parasitology, 2018, 260, 45-48.	1.8	9
65	Risk factors associated with strongylid egg count prevalence and abundance in the United States equine population. Veterinary Parasitology, 2018, 257, 58-68.	1.8	20
66	Encysted cyathostomin larvae in foals – progression of stages and the effect of seasonality. Veterinary Parasitology, 2017, 236, 108-112.	1.8	15
67	Strongyle egg reappearance period after moxidectin treatment and its relationship with management factors in UK equine populations. Veterinary Parasitology, 2017, 237, 70-76.	1.8	44
68	Efficacy of two extra-label anthelmintic formulations against equine strongyles in Cuba. Veterinary Parasitology: Regional Studies and Reports, 2017, 8, 39-42.	0.5	3
69	Helminth egg excretion in horses kept under tropical conditions—Prevalence, distribution and risk factors. Veterinary Parasitology, 2017, 243, 256-259.	1.8	7
70	Managing anthelmintic resistance in Parascaris spp.: A modelling exercise. Veterinary Parasitology, 2017, 240, 75-81.	1.8	19
71	Changes in Hemostatic Indices in Foals Naturally Infected With Strongylus vulgaris. Journal of Equine Veterinary Science, 2017, 54, 1-7.	0.9	7
72	Evaluation of accuracy and precision of a smartphone based automated parasite egg counting system in comparison to the McMaster and Mini-FLOTAC methods. Veterinary Parasitology, 2017, 247, 85-92.	1.8	43

#	Article	IF	CITATIONS
73	Strongyloides westeri worm and egg counts in naturally infected young horses. Veterinary Parasitology, 2017, 248, 1-3.	1.8	7
74	Comparative genome analysis of programmed DNA elimination in nematodes. Genome Research, 2017, 27, 2001-2014.	5.5	94
75	Control of helminth parasites in juvenile horses. Equine Veterinary Education, 2017, 29, 225-232.	0.6	26
76	Accuracy and Precision of Mini-FLOTAC and McMaster Techniques for Determining Equine Strongyle Egg Counts. Journal of Equine Veterinary Science, 2017, 48, 182-187.e1.	0.9	61
77	Nonstrangulating intestinal infarction associated with <i><scp>S</scp>trongylus vulgaris</i> in referred <scp>D</scp> anish equine cases. Equine Veterinary Journal, 2016, 48, 376-379.	1.7	29
78	Equine tapeworm infections: Disease, diagnosis and control. Equine Veterinary Education, 2016, 28, 388-395.	0.6	34
79	An ultrasonographic scoring method for transabdominal monitoring of ascarid burdens in foals. Equine Veterinary Journal, 2016, 48, 380-386.	1.7	23
80	The appropriate antiparasitic treatment: Coping with emerging threats from old adversaries. Equine Veterinary Journal, 2016, 48, 374-375.	1.7	5
81	Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis. International Journal for Parasitology, 2016, 46, 485-493.	3.1	57
82	Objective evaluation of two deworming regimens in young Thoroughbreds using parasitological and performance parameters. Veterinary Parasitology, 2016, 221, 69-75.	1.8	16
83	Evaluation of Baermann apparatus sedimentation time on recovery of third stage Cyathostominae, Strongylus vulgaris and S. edentatus larvae from equine coprocultures. Journal of Equine Veterinary Science, 2016, 39, S46-S47.	0.9	0
84	A model for the development and growth of the parasitic stages of Parascaris spp. in the horse. Veterinary Parasitology, 2016, 228, 108-115.	1.8	11
85	Dynamics of Parascaris and Strongylus spp. parasites in untreated juvenile horses. Veterinary Parasitology, 2016, 230, 62-66.	1.8	33
86	Detection of Strongylus vulgaris in equine faecal samples by real-time PCR and larval culture – method comparison and occurrence assessment. BMC Veterinary Research, 2016, 13, 19.	1.9	19
87	Evidenceâ€based considerations for control of <i>Parascaris</i> spp. infections in horses. Equine Veterinary Education, 2016, 28, 224-231.	0.6	49
88	Comparison of a Smart-Phone based Automated Parasite Egg Count System to the McMaster & mini-FLOTAC Methods. Journal of Equine Veterinary Science, 2016, 39, S49.	0.9	1
89	Biphasic appearance of corticated and decorticated ascarid egg shedding in untreated horse foals. Veterinary Parasitology, 2015, 214, 114-117.	1.8	19
90	Attitudes towards implementation of surveillanceâ€based parasite control on <scp>K</scp> entucky <scp>T</scp> horoughbred farms – Current strategies, awareness and willingnessâ€ŧoâ€pay. Equine Veterinary Journal, 2015, 47, 694-700.	1.7	48

#	Article	IF	CITATIONS
91	Changes in Serum Strongylus Vulgaris-Specific Antibody Concentrations in Response to Anthelmintic Treatment of Experimentally Infected Foals. Frontiers in Veterinary Science, 2015, 2, 17.	2.2	14
92	Evaluation of Baermann apparatus sedimentation time on recovery of Strongylus vulgaris and S. edentatus third stage larvae from equine coprocultures. Veterinary Parasitology, 2015, 211, 99-101.	1.8	16
93	Universal challenges for parasite control: a perspective from equine parasitology. Trends in Parasitology, 2015, 31, 282-284.	3.3	15
94	Comparison of the larvicidal efficacies of moxidectin or a five-day regimen of fenbendazole in horses harboring cyathostomin populations resistant to the adulticidal dosage of fenbendazole. Veterinary Parasitology, 2015, 214, 100-107.	1.8	45
95	Internal Parasite Screening and Control. , 2015, , 336-340.		3
96	A model for the dynamics of the free-living stages of equine cyathostomins. Veterinary Parasitology, 2015, 209, 210-220.	1.8	21
97	Interaction between anthelmintic treatment and vaccine responses in ponies naturally infected with cyathostomins. Veterinary Immunology and Immunopathology, 2015, 164, 110-117.	1.2	2
98	Serum Strongylus vulgaris-specific antibody responses to anthelmintic treatment in naturally infected horses. Parasitology Research, 2015, 114, 445-451.	1.6	14
99	Local and systemic inflammatory and immunologic reactions to cyathostomin larvicidal therapy in horses. Veterinary Immunology and Immunopathology, 2015, 168, 203-210.	1.2	15
100	Comparison of the Immunologic Response to Anthelmintic Treatment in Old Versus Middle-Aged Horses. Journal of Equine Veterinary Science, 2015, 35, 873-881.e3.	0.9	12
101	Transmission of some species of internal parasites in horse foals born in 2013 in the same pasture on a farm in Central Kentucky. Helminthologia, 2015, 52, 211-218.	0.9	5
102	Parascaris univalens—a victim of large-scale misidentification?. Parasitology Research, 2014, 113, 4485-4490.	1.6	50
103	The distribution pattern of Halicephalobus gingivalis in a horse is suggestive of a haematogenous spread of the nematode. Acta Veterinaria Scandinavica, 2014, 56, 56.	1.6	18
104	Drug Resistance or Re-Emergence? Simulating Equine Parasites. ACM Transactions on Modeling and Computer Simulation, 2014, 24, 1-23.	0.8	5
105	Review of the biology and control of <i><scp>O</scp>xyuris equi</i> . Equine Veterinary Education, 2014, 26, 584-591.	0.6	27
106	Physiologic and systemic acute phase inflammatory responses in young horses repeatedly infected with cyathostomins and Strongylus vulgaris. Veterinary Parasitology, 2014, 201, 67-74.	1.8	15
107	Development of Strongylus vulgaris-specific serum antibodies in naturally infected foals. Veterinary Parasitology, 2014, 200, 265-270.	1.8	13
108	Anthelmintic resistance in important parasites of horses: Does it really matter?. Veterinary Parasitology, 2014, 201, 1-8.	1.8	177

#	Article	IF	CITATIONS
109	Selective therapy in equine parasite control—Application and limitations. Veterinary Parasitology, 2014, 202, 95-103.	1.8	60
110	Nematodes. , 2014, , 475-489.e4.		1
111	Profiles of strongyle EPG values for Thoroughbred mares on 14 farms in Kentucky (2012–2013). Veterinary Parasitology, 2014, 205, 646-652.	1.8	4
112	Equine parasite control under prescription-only conditions in Denmark – Awareness, knowledge, perception, and strategies applied. Veterinary Parasitology, 2014, 204, 64-72.	1.8	30
113	Anthelmintic resistance in equine parasites—Current evidence and knowledge gaps. Veterinary Parasitology, 2014, 204, 55-63.	1.8	63
114	Effects of daily pyrantel tartrate on strongylid population dynamics and performance parameters of young horses repeatedly infected with cyathostomins and Strongylus vulgaris. Veterinary Parasitology, 2014, 204, 229-237.	1.8	12
115	SvSXP: a Strongylus vulgaris antigen with potential for prepatent diagnosis. Parasites and Vectors, 2013, 6, 84.	2.5	40
116	Daily Variability of Strongyle Fecal Egg Counts in Horses. Journal of Equine Veterinary Science, 2013, 33, 161-164.	0.9	28
117	Hierarchical model for evaluating pyrantel efficacy against strongyle parasites in horses. Veterinary Parasitology, 2013, 197, 614-622.	1.8	21
118	Recent advances in diagnosing pathogenic equine gastrointestinal helminths: The challenge of prepatent detection. Veterinary Parasitology, 2013, 192, 1-9.	1.8	37
119	Developmental stage of strongyle eggs affects the outcome variations of real-time PCR analysis. Veterinary Parasitology, 2013, 191, 191-196.	1.8	5
120	Characterization of the inflammatory response to anthelmintic treatment of ponies with cyathostominosis. Veterinary Journal, 2013, 198, 457-462.	1.7	19
121	Population genetics of Parascaris equorum based on DNA fingerprinting. Infection, Genetics and Evolution, 2013, 13, 236-241.	2.3	14
122	Association between large strongyle genera in larval cultures – using rare-event Poisson regression. Parasitology, 2013, 140, 1246-1251.	1.5	7
123	Strongylus vulgaris associated with usage of selective therapy on Danish horse farms—ls it reemerging?. Veterinary Parasitology, 2012, 189, 260-266.	1.8	104
124	Real-time PCR evaluation of Strongylus vulgaris in horses on farms in Denmark and Central Kentucky. Veterinary Parasitology, 2012, 190, 461-466.	1.8	23
125	Real-time PCR determination of Strongylus vulgaris in horses on farms with different anthelmintic regimens in Denmark and Central Kentucky. Journal of Equine Veterinary Science, 2012, 32, S50-S51.	0.9	0
126	Evaluation of conventional PCR for detection of Strongylus vulgaris on horse farms. Veterinary Parasitology, 2012, 184, 387-391.	1.8	19

#	Article	IF	CITATIONS
127	Sustainable equine parasite control: Perspectives and research needs. Veterinary Parasitology, 2012, 185, 32-44.	1.8	75
128	Resistance to avermectin/milbemycin anthelmintics in equine cyathostomins – Current situation. Veterinary Parasitology, 2012, 185, 16-24.	1.8	41
129	Preface. Veterinary Parasitology, 2012, 185, 1.	1.8	4
130	Strongyle egg counts in Standardbred trotters: Are they associated with race performance?. Equine Veterinary Journal, 2011, 43, 89-92.	1.7	5
131	Determination of ivermectin efficacy against cyathostomins and Parascaris equorum on horse farms using selective therapy. Veterinary Journal, 2011, 188, 44-47.	1.7	43
132	Prevalence of strongyles and efficacy of fenbendazole and ivermectin in working horses in El Sauce, Nicaragua. Veterinary Parasitology, 2011, 181, 248-254.	1.8	13
133	Comparison of three alternative methods for analysis of equine Faecal Egg Count Reduction Test data. Preventive Veterinary Medicine, 2010, 93, 316-323.	1.9	34
134	Effects of fecal collection and storage factors on strongylid egg counts in horses. Veterinary Parasitology, 2010, 167, 55-61.	1.8	79
135	Selective anthelmintic therapy of horses in the Federal states of Bavaria (Germany) and Salzburg (Austria): An investigation into strongyle egg shedding consistency. Veterinary Parasitology, 2010, 171, 116-122.	1.8	58
136	Analysis of multiyear studies in horses in Kentucky to ascertain whether counts of eggs and larvae per gram of feces are reliable indicators of numbers of strongyles and ascarids present. Veterinary Parasitology, 2010, 174, 77-84.	1.8	107
137	An evidenceâ€based approach to equine parasite control: It ain't the 60s anymore. Equine Veterinary Education, 2010, 22, 306-316.	0.6	161
138	Practical aspects of equine parasite control: A review based upon a workshop discussion consensus. Equine Veterinary Journal, 2010, 42, 460-468.	1.7	47
139	Restrictions of anthelmintic usage: perspectives and potential consequences. Parasites and Vectors, 2009, 2, S7.	2.5	27
140	Parasitism and Colic. Veterinary Clinics of North America Equine Practice, 2009, 25, 233-245.	0.7	41
141	Detection and semi-quantification of Strongylus vulgaris DNA in equine faeces by real-time quantitative PCR. International Journal for Parasitology, 2008, 38, 443-453.	3.1	94
142	Apparent ivermectin resistance of <i>Parascaris equorum</i> in foals in Denmark. Veterinary Record, 2007, 160, 439-440.	0.3	63
143	Climatic influences on development and survival of free-living stages of equine strongyles: Implications for worm control strategies and managing anthelmintic resistance. Veterinary Journal, 2007, 174, 23-32.	1.7	128
144	Interpretation of serum antibody response to <i>Anoplocephala perfoliata</i> in relation to parasite burden and faecal egg count. Equine Veterinary Journal, 2007, 39, 529-533.	1.7	39

#	Article	IF	CITATIONS
145	Strongyle egg shedding consistency in horses on farms using selective therapy in Denmark. Veterinary Parasitology, 2006, 135, 333-335.	1.8	89
146	Prescription-only anthelmintics—A questionnaire survey of strategies for surveillance and control of equine strongyles in Denmark. Veterinary Parasitology, 2006, 135, 47-55.	1.8	91
147	Occurrence of Strongylid Nematode Parasites on Horse Farms in Berlin and Brandenburg, Germany, With High Seroprevalence of Strongylus vulgaris Infection. Frontiers in Veterinary Science, 0, 9, .	2.2	9