Gordon G Southam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6674027/publications.pdf

Version: 2024-02-01

227 papers

12,308 citations

28274 55 h-index 101 g-index

234 all docs

234 docs citations

234 times ranked

10485 citing authors

#	Article	IF	Citations
1	Electrical transport along bacterial nanowires from <i>Shewanella oneidensis</i> MR-1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18127-18131.	7.1	566
2	Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth. Science, 2008, 322, 275-278.	12.6	474
3	Could bacteria have formed the Precambrian banded iron formations?. Geology, 2002, 30, 1079.	4.4	444
4	Biosynthesis of Silver Nanoparticles by Filamentous Cyanobacteria from a Silver(I) Nitrate Complex. Langmuir, 2007, 23, 2694-2699.	3.5	366
5	Morphology of Gold Nanoparticles Synthesized by Filamentous Cyanobacteria from Gold(I)â^Thiosulfate and Gold(II)â^Chloride Complexes. Langmuir, 2006, 22, 2780-2787.	3.5	324
6	Mechanisms of Gold Bioaccumulation by Filamentous Cyanobacteria from Gold(III)â^'Chloride Complex. Environmental Science & Env	10.0	288
7	Bacterial growth at â^15 °C; molecular insights from the permafrost bacterium <i>Planococcus halocryophilus</i> Or1. ISME Journal, 2013, 7, 1211-1226.	9.8	286
8	Mechanisms of gold biomineralization in the bacterium <i>Cupriavidus metallidurans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17757-17762.	7.1	283
9	Impact-generated hydrothermal systems on Earth and Mars. Icarus, 2013, 224, 347-363.	2.5	219
10	The geomicrobiology of gold. ISME Journal, 2007, 1, 567-584.	9.8	212
11	Gold biomineralization by a metallophore from a gold-associated microbe. Nature Chemical Biology, 2013, 9, 241-243.	8.0	212
12	Anaerobic methane oxidation coupled to manganese reduction by members of the <i>Methanoperedenaceae</i> . ISME Journal, 2020, 14, 1030-1041.	9.8	203
13	Carbon Dioxide Fixation within Mine Wastes of Ultramafic-Hosted Ore Deposits: Examples from the Clinton Creek and Cassiar Chrysotile Deposits, Canada. Economic Geology, 2009, 104, 95-112.	3.8	201
14	Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex. Geochimica Et Cosmochimica Acta, 2006, 70, 3646-3661.	3.9	177
15	Carbon Mineralization: From Natural Analogues to Engineered Systems. Reviews in Mineralogy and Geochemistry, 2013, 77, 305-360.	4.8	174
16	The in vitro formation of placer gold by bacteria. Geochimica Et Cosmochimica Acta, 1994, 58, 4527-4530.	3.9	173
17	Desulfotomaculum and Methanobacterium spp. Dominate a 4- to 5-Kilometer-Deep Fault. Applied and Environmental Microbiology, 2005, 71, 8773-8783.	3.1	172
18	Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion. Corrosion Science, 2011, 53, 955-960.	6.6	165

#	Article	IF	CITATIONS
19	Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1857-1876.	4.0	163
20	The impact of sediment fecal coliform reservoirs on seasonal water quality in Oak Creek, ARIZONA. Water Research, 1999, 33, 2163-2171.	11.3	157
21	Synthesis of Platinum Nanoparticles by Reaction of Filamentous Cyanobacteria with Platinum(IV)â-'Chloride Complex. Langmuir, 2006, 22, 7318-7323.	3.5	153
22	Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Applied Geochemistry, 1999, 14, 511-530.	3.0	146
23	The Geomicrobiology of Ore Deposits. Economic Geology, 2005, 100, 1067-1084.	3.8	144
24	A highâ€resolution chemical and structural study of framboidal pyrite formed within a lowâ€temperature bacterial biofilm. Geobiology, 2008, 6, 471-480.	2.4	143
25	Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation. Geology, 2010, 38, 843-846.	4.4	137
26	Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochimica Et Cosmochimica Acta, 1999, 63, 2019-2023.	3.9	136
27	The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochimica Et Cosmochimica Acta, 1996, 60, 4369-4376.	3.9	132
28	Synthesis of Palladium Nanoparticles by Reaction of Filamentous Cyanobacterial Biomass with a Palladium(II) Chloride Complex. Langmuir, 2007, 23, 8982-8987.	3.5	120
29	Biologically induced mineralization of dypingite by cyanobacteria from an alkaline wetland near Atlin, British Columbia, Canada. Geochemical Transactions, 2007, 8, 13.	0.7	119
30	Enumeration of Thiobacilli within pH-Neutral and Acidic Mine Tailings and Their Role in the Development of Secondary Mineral Soil. Applied and Environmental Microbiology, 1992, 58, 1904-1912.	3.1	117
31	The hydromagnesite playas of Atlin, British Columbia, Canada: A biogeochemical model for CO2 sequestration. Chemical Geology, 2009, 260, 286-300.	3.3	114
32	Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining. International Journal of Greenhouse Gas Control, 2014, 25, 121-140.	4.6	113
33	Production and characterization of monoclonal antibodies against serotype strains of Pseudomonas aeruginosa. Infection and Immunity, 1987, 55, 1051-1057.	2.2	111
34	The Biogeochemistry of Gold. Elements, 2009, 5, 303-307.	0.5	106
35	A critical stage in the formation of acid mine drainage: Colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions. Geobiology, 2003, 1, 81-90.	2.4	104
36	<i>Shewanella oneidensis</i> MR-1 Bacterial Nanowires Exhibit p-Type, Tunable Electronic Behavior. Nano Letters, 2013, 13, 2407-2411.	9.1	103

#	Article	IF	CITATIONS
37	Temporal Shifts in the Geochemistry and Microbial Community Structure of an Ultradeep Mine Borehole Following Isolation. Geomicrobiology Journal, 2003, 20, 517-548.	2.0	96
38	Nickel sulfide, iron-nickel sulfide and iron sulfide precipitation by a newly isolated Desulfotomaculum species and its relation to nickel resistance. FEMS Microbiology Ecology, 1994, 14, 121-132.	2.7	93
39	The Origin and Age of Biogeochemical Trends in Deep Fracture Water of the Witwatersrand Basin, South Africa. Geomicrobiology Journal, 2006, 23, 369-414.	2.0	88
40	Microbially Mediated Mineral Carbonation: Roles of Phototrophy and Heterotrophy. Environmental Science & Environmental Science	10.0	84
41	The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex. Geochimica Et Cosmochimica Acta, 2005, 69, 3759-3772.	3.9	83
42	Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation. International Journal of Greenhouse Gas Control, 2013, 16, 145-155.	4.6	80
43	Platinum in Earth surface environments. Earth-Science Reviews, 2014, 131, 1-21.	9.1	80
44	Modern lacustrine microbialites: Towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth-Science Reviews, 2016, 162, 338-363.	9.1	80
45	Supergene gold transformation: Biogenic secondary and nano-particulate gold from arid Australia. Chemical Geology, 2012, 320-321, 17-31.	3.3	79
46	Implications of in situ calcification for photosynthesis in a ~3.3Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth and Planetary Science Letters, 2011, 310, 468-479.	4.4	75
47	Isolation, characterization, and cellular insertion of the flagella from two strains of the archaebacterium Methanospirillum hungatei. Journal of Bacteriology, 1990, 172, 3221-3228.	2.2	74
48	Bioleaching of Ultramafic Tailings by <i>Acidithiobacillus</i> spp. for CO ₂ Sequestration. Environmental Science &	10.0	70
49	Biomineralization of Gold in Biofilms of <i>Cupriavidus metallidurans</i> . Environmental Science & Env	10.0	70
50	Subarctic Weathering of Mineral Wastes Provides a Sink for Atmospheric CO ₂ . Environmental Science & Environmental S	10.0	69
51	Deciphering Biosignatures in Planetary Contexts. Astrobiology, 2019, 19, 1075-1102.	3.0	66
52	Biogeochemical phenomena induced by bacteria within sulfidic mine tailings. Journal of Industrial Microbiology, 1995, 14, 178-185.	0.9	65
53	The preservation and degradation of filamentous bacteria and biomolecules within iron oxide deposits at Rio Tinto, Spain. Geobiology, 2011, 9, 233-249.	2.4	64
54	Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential. Frontiers in Microbiology, 2015, 6, 966.	3.5	62

#	Article	IF	CITATIONS
55	The Role of Bacteria in the Supergene Environment of the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. Economic Geology, 2006, 101, 59-70.	3.8	59
56	Strategizing Carbon-Neutral Mines: A Case for Pilot Projects. Minerals (Basel, Switzerland), 2014, 4, 399-436.	2.0	58
57	A structural comparison of bacterial microfossils vs. 'nanobacteria' and nanofossils. Earth-Science Reviews, 1999, 48, 251-264.	9.1	54
58	Geobiological Cycling of Gold: From Fundamental Process Understanding to Exploration Solutions. Minerals (Basel, Switzerland), 2013, 3, 367-394.	2.0	54
59	The role of "blebbing―in overcoming the hydrophobic barrier during biooxidation of elemental sulfur by Thiobacillus thiooxidans. Chemical Geology, 2000, 169, 425-433.	3.3	53
60	A depositional model for hydromagnesite–magnesite playas near Atlin, British Columbia, Canada. Sedimentology, 2014, 61, 1701-1733.	3.1	50
61	Microbially Accelerated Carbonate Mineral Precipitation as a Strategy for in Situ Carbon Sequestration and Rehabilitation of Asbestos Mine Sites. Environmental Science & Emp; Technology, 2016, 50, 1419-1427.	10.0	50
62	Secondary gold structures: Relics of past biogeochemical transformations and implications for colloidal gold dispersion in subtropical environments. Chemical Geology, 2017, 450, 154-164.	3.3	50
63	Structural and Chemical Characterization of a Natural Fracture Surface from 2.8 Kilometers Below Land Surface: Biofilms in the Deep Subsurface. Geomicrobiology Journal, 2006, 23, 443-452.	2.0	49
64	Effect of the cyanide-producing bacterium Chromobacterium violaceum on ultraflat Au surfaces. Chemical Geology, 2009, 265, 313-320.	3.3	48
65	Photosynthetic isotope biosignatures in laminated micro-stromatolitic and non-laminated nodules associated with modern, freshwater microbialites in Pavilion Lake, B.C Chemical Geology, 2010, 274, 56-67.	3.3	48
66	Organic Matter Amendment and Plant Colonization Drive Mineral Weathering, Organic Carbon Sequestration, and Water-Stable Aggregation in Magnetite Fe Ore Tailings. Environmental Science & Echnology, 2019, 53, 13720-13731.	10.0	48
67	The Deposition of Elemental Gold from Gold(I)-Thiosulfate Complexes Mediated by Sulfate-Reducing Bacterial Conditions. Economic Geology, 2007, 102, 109-126.	3.8	47
68	Acidic Microenvironments in Waste Rock Characterized by Neutral Drainage: Bacteria–Mineral Interactions at Sulfide Surfaces. Minerals (Basel, Switzerland), 2014, 4, 170-190.	2.0	47
69	Potential for offsetting diamond mine carbon emissions through mineral carbonation of processed kimberlite: an assessment of De Beers mine sites in South Africa and Canada. Mineralogy and Petrology, 2018, 112, 755-765.	1.1	47
70	A Greenhouse-Scale Photosynthetic Microbial Bioreactor for Carbon Sequestration in Magnesium Carbonate Minerals. Environmental Science & Environmental	10.0	46
71	Biological role in the transformation of platinum-group mineralÂgrains. Nature Geoscience, 2016, 9, 294-298.	12.9	46
72	Nocturnal Production of Endospores in Natural Populations of Epulopiscium-Like Surgeonfish Symbionts. Journal of Bacteriology, 2005, 187, 7460-7470.	2.2	45

#	Article	IF	CITATIONS
73	Accelerating Mineral Carbonation in Ultramafic Mine Tailings via Direct CO2 Reaction and Heap Leaching with Potential for Base Metal Enrichment and Recovery. Economic Geology, 2020, 115, 303-323.	3.8	45
74	Geochemical and mineralogical constraints in iron ore tailings limit soil formation for direct phytostabilization. Science of the Total Environment, 2019, 651, 192-202.	8.0	44
75	Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan. Ore Geology Reviews, 2017, 84, 20-41.	2.7	43
76	Transmission electron microscopy, scanning tunneling microscopy, and atomic force microscopy of the cell envelope layers of the archaeobacterium Methanospirillum hungatei GP1. Journal of Bacteriology, 1993, 175, 1946-1955.	2,2	42
77	Proteomic responses to gold(<scp>iii</scp>)-toxicity in the bacterium Cupriavidus metallidurans CH34. Metallomics, 2016, 8, 1204-1216.	2.4	42
78	Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 2018, 79, 38-60.	4.6	42
79	Examination of Lipopolysaccharide (O-Antigen) Populations of <i>Thiobacillus ferrooxidans</i> from Two Mine Tailings. Applied and Environmental Microbiology, 1993, 59, 1283-1288.	3.1	42
80	High-resolution topography of the S-layer sheath of the archaebacterium Methanospirillum hungatei provided by scanning tunneling microscopy. Journal of Bacteriology, 1990, 172, 6589-6595.	2.2	41
81	Advanced biofilm staining techniques for TEM and SEM in geomicrobiology: Implications for visualizing EPS architecture, mineral nucleation, and microfossil generation. Chemical Geology, 2018, 498, 115-127.	3.3	41
82	A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME Journal, 2020, 14, 2649-2658.	9.8	41
83	Characterization of the cell wall of the sheathed methanogen Methanospirillum hungatei GP1 as an S layer. Journal of Bacteriology, 1993, 175, 7550-7560.	2.2	40
84	Bacterial nanowires: conductive as silicon, soft as polymer. Soft Matter, 2011, 7, 6617.	2.7	40
85	Modern carbonate microbialites from an asbestos open pit pond, Yukon, Canada. Geobiology, 2011, 9, 180-195.	2.4	40
86	Bioconversion of coal: new insights from a core flooding study. RSC Advances, 2014, 4, 22779.	3.6	40
87	Minerals as Substrates for Life: The Prokaryotic View. Elements, 2012, 8, 101-106.	0.5	39
88	In situ recovery of uranium â€" the microbial influence. Hydrometallurgy, 2014, 150, 236-244.	4.3	39
89	Evidence of biogeochemical processes in iron duricrust formation. Journal of South American Earth Sciences, 2016, 71, 131-142.	1.4	39
90	Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes. Minerals Engineering, 2022, 182, 107537.	4.3	38

#	Article	IF	CITATIONS
91	Sulfur Isotope Enrichment during Maintenance Metabolism in the Thermophilic Sulfate-Reducing Bacterium <i>Desulfotomaculum putei</i> . Applied and Environmental Microbiology, 2009, 75, 5621-5630.	3.1	37
92	Fate of transition metals during passive carbonation of ultramafic mine tailings via air capture with potential for metal resource recovery. International Journal of Greenhouse Gas Control, 2018, 71, 155-167.	4.6	37
93	Microscopic characterization of the bacterial cell envelope of Planococcus halocryophilus Or1 during subzero growth at â^'15°C. Polar Biology, 2016, 39, 701-712.	1.2	36
94	Biogeochemical processes in canga ecosystems: Armoring of iron ore against erosion and importance in iron duricrust restoration in Brazil. Ore Geology Reviews, 2019, 107, 573-586.	2.7	36
95	Mineralogical, Chemical and Biological Characterization of an Anaerobic Biofilm Collected from a Borehole in a Deep Gold Mine in South Africa. Geomicrobiology Journal, 2007, 24, 491-504.	2.0	35
96	Characterization of halophiles in natural MgSO4 salts and laboratory enrichment samples: Astrobiological implications for Mars. Planetary and Space Science, 2010, 58, 599-615.	1.7	34
97	Production of magnesium-rich solutions by acid leaching of chrysotile: A precursor to field-scale deployment of microbially enabled carbonate mineral precipitation. Chemical Geology, 2015, 413, 119-131.	3.3	33
98	Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia. Environmental Science & Environmental Scie	10.0	32
99	Carbon Sequestration in Biogenic Magnesite and Other Magnesium Carbonate Minerals. Environmental Science & Environmental Scien	10.0	32
100	Pyrite discs in coal: Evidence for fossilized bacterial colonies. Geology, 2001, 29, 47.	4.4	31
101	The early record of life. Geophysical Monograph Series, 2006, , 283-304.	0.1	31
102	The in-vitro "growth―of gold grains. Geology, 2015, 43, 79-82.	4.4	31
103	Floating Gold Grains and Nanophase Particles Produced from the Biogeochemical Weathering of a Gold-Bearing Ore. Economic Geology, 2016, 111, 1485-1494.	3.8	31
104	Experimental Deployment of Microbial Mineral Carbonation at an Asbestos Mine: Potential Applications to Carbon Storage and Tailings Stabilization. Minerals (Basel, Switzerland), 2017, 7, 191.	2.0	31
105	Structural characterization of the hydrocarbon degrading bacteria–oil interface: implications for bioremediation. International Biodeterioration and Biodegradation, 2001, 47, 197-201.	3.9	30
106	Microbiologically Influenced Corrosion Capability of Bacteria Isolated from Yucca Mountain. Corrosion, 2004, 60, 64-74.	1.1	29
107	Bioaccumulation of Gold by Filamentous Cyanobacteria Between 25 and 200°C. Geomicrobiology Journal, 2006, 23, 591-597.	2.0	28
108	Microbial Diversity in Actively Forming Iron Oxides from Weathered Banded Iron Formation Systems. Microbes and Environments, 2018, 33, 385-393.	1.6	28

#	Article	IF	CITATIONS
109	Desert Potholes: Ephemeral Aquatic Microsystems. Aquatic Geochemistry, 2005, 11, 279-302.	1.3	27
110	Precipitation of gold by the reaction of aqueous gold(III) chloride with cyanobacteria at 25–80â€,°Câ€,—â€,Studied by X-ray absorption spectroscopy. Canadian Journal of Chemistry, 2007, 85, 651	- 65 9.	27
111	Stars of the terrestrial deep subsurface: A novel â€~starâ€shaped' bacterial morphotype from a South African platinum mine. Geobiology, 2008, 6, 325-330.	2.4	27
112	The effect of gram-positive (<i>Desulfosporosinus orientis</i>) and gram-negative (<i>Desulfovibrio) Tj ETQq0 0 0 of Microbiology, 2018, 64, 629-637.</i>	rgBT /Ove 1.7	erlock 10 Tf 27
113	Structural and Chemical Characterization of Placer Gold Grains: Implications for Bacterial Contributions to Grain Formation. Geomicrobiology Journal, 2015, 32, 158-169.	2.0	25
114	Goethite Reduction by a Neutrophilic Member of the Alphaproteobacterial Genus Telmatospirillum. Frontiers in Microbiology, 2019, 10, 2938.	3.5	25
115	Bacterial Surface-Mediated Mineral Formation. , 0, , 257-276.		25
116	Survival and Growth of Yersinia enterocolitica in Egg Washwater. Journal of Food Protection, 1987, 50, 103-107.	1.7	24
117	Nesquehonite sequesters transition metals and CO2 during accelerated carbon mineralisation. International Journal of Greenhouse Gas Control, 2016, 55, 73-81.	4.6	24
118	Performance of a sulfidogenic bioreactor inoculated with indigenous acidic communities for treating an extremely acidic mine water. Minerals Engineering, 2019, 131, 370-375.	4.3	24
119	Biochemical synthesis of palladium nanoparticles: The influence of chemical fixatives used in electron microscopy on nanoparticle formation and catalytic performance. Journal of Hazardous Materials, 2020, 398, 122945.	12.4	24
120	Acidophilic Iron- and Sulfur-Oxidizing Bacteria, <i>Acidithiobacillus ferrooxidans</i> , Drives Alkaline pH Neutralization and Mineral Weathering in Fe Ore Tailings. Environmental Science & Eamp; Technology, 2021, 55, 8020-8034.	10.0	24
121	Characterization of novel, phenol-soluble polypeptides which confer rigidity to the sheath of Methanospirillum hungatei GP1. Journal of Bacteriology, 1992, 174, 935-946.	2.2	23
122	Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars. Earth and Planetary Science Letters, 2012, 351-352, 13-26.	4.4	23
123	The Geomicrobiology of Supergene Metal Deposits. Elements, 2015, 11, 337-342.	0.5	23
124	Bioleaching of waste material from the Salobo mine, Brazil: Recovery of refractory copper from Cu hosted in silicate minerals. Chemical Geology, 2018, 498, 72-82.	3.3	23
125	Biogeochemical Cycling of Silver in Acidic, Weathering Environments. Minerals (Basel, Switzerland), 2017, 7, 218.	2.0	22
126	Microbial Populations of Stony Meteorites: Substrate Controls on First Colonizers. Frontiers in Microbiology, 2017, 8, 1227.	3.5	22

#	Article	IF	CITATIONS
127	Geochemical and mineralogical changes in magnetite Fe-ore tailings induced by biomass organic matter amendment. Science of the Total Environment, 2020, 724, 138196.	8.0	22
128	Investigating intra-bone isotopic variations in bioapatite using IR-laser ablation and micromilling: Implications for identifying diagenesis?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 266, 190-199.	2.3	21
129	The influence of hydrogeological disturbance and mining on coal seam microbial communities. Geobiology, 2016, 14, 163-175.	2.4	21
130	Phosphate treatment alleviated acute phytotoxicity of heavy metals inÂsulfidic Pb-Zn mine tailings. Environmental Pollution, 2019, 250, 676-685.	7.5	21
131	Microstructure variability in freshwater microbialites, Pavilion Lake, Canada. Palaeogeography, Palaeoecology, 2013, 392, 62-70.	2.3	20
132	The effect of iron-oxidising bacteria on the stability of gold (I) thiosulphate complex. Chemical Geology, 2014, 376, 52-60.	3.3	20
133	Microstructural characteristics of naturally formed hardpan capping sulfidic copper-lead-zinc tailings. Environmental Pollution, 2018, 242, 1500-1509.	7.5	20
134	Biogeochemical cycling of iron: Implications for biocementation and slope stabilisation. Science of the Total Environment, 2020, 707, 136128.	8.0	20
135	Dissolution and immunochemical analysis of the sheath of the archaeobacterium Methanospirillum hungatei GP1. Journal of Bacteriology, 1991, 173, 6213-6222.	2.2	19
136	Beachrock formation via microbial dissolution and re-precipitation of carbonate minerals. Marine Geology, 2016, 382, 122-135.	2.1	19
137	Field-based accounting of CO ₂ sequestration in ultramafic mine wastes using portable X-ray diffraction. American Mineralogist, 2017, 102, 1302-1310.	1.9	19
138	Synthesis of Copper Sulfide Nanoparticles Using Biogenic H2S Produced by a Low-pH Sulfidogenic Bioreactor. Minerals (Basel, Switzerland), 2018, 8, 35.	2.0	19
139	Deficiencies of secondary Fe (oxy)hydroxides associated with phyllosilicates and organic carbon limit the formation of water-stable aggregates in Fe-ore tailings. Chemical Geology, 2019, 523, 73-87.	3.3	19
140	Predicted CO2 water rock reactions in naturally altered CO2 storage reservoir sandstones, with interbedded cemented and coaly mudstone seals. International Journal of Coal Geology, 2022, 253, 103966.	5.0	19
141	The Organization of the Paracrystalline Multilayered Spacer-Plugs of Methanospirillum hungatei. Journal of Structural Biology, 1994, 112, 160-171.	2.8	18
142	MORPHOLOGICAL AND CHEMICAL STUDY OF PLACER GOLD FROM THE SAN LUIS RANGE, ARGENTINA. Canadian Mineralogist, 2004, 42, 169-182.	1.0	18
143	The role of aluminium in the preservation of microbial biosignatures. Geoscience Frontiers, 2019, 10, 1125-1138.	8.4	18
144	Bacterial influence on storage and mobilisation of metals in iron-rich mine tailings from the Salobo mine, Brazil. Science of the Total Environment, 2019, 680, 91-104.	8.0	18

#	Article	IF	CITATIONS
145	Rhizosphere modifications of iron-rich minerals and forms of heavy metals encapsulated in sulfidic tailings hardpan. Journal of Hazardous Materials, 2020, 384, 121444.	12.4	18
146	Scanning force microscopy studies of the colonization and growth of A. ferrooxidans on the surface of pyrite minerals. Scanning, 2005, 27, 136-140.	1.5	17
147	The Geology and Habitability of Terrestrial Planets: Fundamental Requirements for Life. Space Science Reviews, 2007, 129, 7-34.	8.1	17
148	The immobilization of gold from gold (III) chloride by a halophilic sulphate-reducing bacterial consortium. Geological Society Special Publication, 2015, 393, 249-263.	1.3	17
149	Building biogenic beachrock: Visualizing microbially-mediated carbonate cement precipitation using XFM and a strontium tracer. Chemical Geology, 2017, 465, 21-34.	3.3	17
150	Microbial weathering signatures in lateritic ferruginous duricrusts. Earth and Planetary Science Letters, 2020, 538, 116209.	4.4	17
151	IODP Expedition 331: Strong and Expansive Subseafloor Hydrothermal Activities in the Okinawa Trough. Scientific Drilling, 2012, , .	0.6	17
152	Biosynthesis of Gold Nanoparticles: A Review. , 2011, , 37-74.		16
153	Biogeochemical cycling of iron oxides in the rhizosphere of plants grown on ferruginous duricrust (canga). Science of the Total Environment, 2020, 713, 136637.	8.0	16
154	Nickel complexation as an innovative approach for nickel-cobalt selective recovery using sulfate-reducing bacteria. Journal of Hazardous Materials, 2021, 402, 123506.	12.4	16
155	Toward Closing a Loophole: Recovering Rare Earth Elements from Uranium Metallurgical Process Tailings. Jom, 2021, 73, 39-53.	1.9	16
156	Rhizosphere Drives Biotite-Like Mineral Weathering and Secondary Fe–Si Mineral Formation in Fe Ore Tailings. ACS Earth and Space Chemistry, 2021, 5, 618-631.	2.7	16
157	Multi-technique investigation reveals new mineral, chemical, and textural heterogeneity in the Tagish Lake C2 chondrite. Planetary and Space Science, 2010, 58, 1347-1364.	1.7	15
158	Structural and biological control of the Cenozoic epithermal uranium concentrations from the Sierra Peña Blanca, Mexico. Mineralium Deposita, 2012, 47, 859-874.	4.1	15
159	Surface transformations of platinum grains from Fifield, New South Wales, Australia. American Mineralogist, 2015, 100, 1236-1243.	1.9	14
160	A Spectral Comparison of Jarosites Using Techniques Relevant to the Robotic Exploration of Biosignatures on Mars. Life, 2018, 8, 61.	2.4	14
161	Impact-Generated Endolithic Habitat Within Crystalline Rocks of the Haughton Impact Structure, Devon Island, Canada. Astrobiology, 2014, 14, 522-533.	3.0	13
162	Bioaugmentation with Acidithiobacillus species accelerates mineral weathering and formation of secondary mineral cements for hardpan development in sulfidic Pb-Zn tailings. Journal of Hazardous Materials, 2021, 411, 124988.	12.4	13

#	Article	IF	CITATIONS
163	An enzyme-linked immunosorbent assay for plant cadmium-binding peptide. Plant Science, 1988, 57, 37-43.	3.6	12
164	Scanning tunneling microscope imaging of hoops from the cell sheath of the bacteria methanospirillum hungatei and atomic force microscope imaging of complete sheathes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991, 9, 1242.	1.6	12
165	Efficiency of a Subsurface Constructed Wetland System Using Native Southwestern U.S. Plants. Journal of Environmental Quality, 1999, 28, 225-231.	2.0	12
166	The imaging of a complete biological structure with the scanning tunneling microscope. Ultramicroscopy, 1989, 27, 427-432.	1.9	11
167	Detection of growth sites in and protomer pools for the sheath of Methanospirillum hungatei GP1 by use of constituent organosulfur and immunogold labeling. Journal of Bacteriology, 1992, 174, 6460-6470.	2.2	11
168	AFM and STM studies of the interaction of antibodies with the S-layer sheath of the archaeobacterium Methanospirillum hungatei. Ultramicroscopy, 1992, 42-44, 1214-1221.	1.9	11
169	Caves in caves: evolution of post-depositional macroholes in stalagmites. International Journal of Speleology, 2014, 43, 323-334.	1.0	11
170	Infrared Spectroscopic Biosignatures from Hidden Cave, New Mexico: Possible Applications for Remote Life Detection. Geomicrobiology Journal, 2014, 31, 929-941.	2.0	11
171	Immobilisation of Platinum by Cupriavidus metallidurans. Minerals (Basel, Switzerland), 2018, 8, 10.	2.0	11
172	The influence of biologically produced sulfide-containing solutions on nickel and cobalt precipitation reactions and particle settling properties. Hydrometallurgy, 2019, 189, 105142.	4.3	11
173	Zinc and lead encapsulated in amorphous ferric cements within hardpans in situ formed from sulfidic Cu-Pb-Zn tailings. Environmental Pollution, 2019, 252, 1106-1116.	7.5	11
174	Characterisation of iron oxide encrusted microbial fossils. Scientific Reports, 2020, 10, 9889.	3.3	11
175	Chemodiversity of Dissolved Organic Matter and Its Molecular Changes Driven by Rhizosphere Activities in Fe Ore Tailings Undergoing Eco-Engineered Pedogenesis. Environmental Science & Emp; Technology, 2021, 55, 13045-13060.	10.0	11
176	Quantification of sulfur and phosphorus within secondary gold rims on Yukon placer gold. Geology, 1998, 26, 339.	4.4	10
177	Evaluation of meteorites as habitats for terrestrial microorganisms: Results from the Nullarbor Plain, Australia, a Mars analogue site. Geochimica Et Cosmochimica Acta, 2017, 215, 1-16.	3.9	10
178	Changes in microbial community structure and increased metal bioavailability in a metal-contaminated soil and in the rhizosphere of corn (Zea mays). Rhizosphere, 2019, 11, 100169.	3.0	10
179	Biocement stabilization of an experimental-scale artificial slope and the reformation of iron-rich crusts. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18347-18354.	7.1	10
180	Accelerating microbial iron cycling promotes reâ€cementation of surface crusts in iron ore regions. Microbial Biotechnology, 2020, 13, 1960-1971.	4.2	10

#	Article	IF	Citations
181	The effect of bituminous coal on methanogenic mixed cultures and pure cultures of Methanococcus and Methanosarcina. Fuel, 2017, 205, 60-70.	6.4	9
182	Cation Exchange in Smectites as a New Approach to Mineral Carbonation. Frontiers in Climate, 0, 4, .	2.8	9
183	The effects of meteorite impacts on the availability of bioessential elements for endolithic organisms. Meteoritics and Planetary Science, 2012, 47, 1681-1691.	1.6	8
184	Geology, Life, and Habitability., 2015, , 473-486.		8
185	Evaluation of Dispersed Alkaline Substrate and Diffusive Exchange System Technologies for the Passive Treatment of Copper Mining Acid Drainage. Water (Switzerland), 2020, 12, 854.	2.7	8
186	Contribution of bacterially-induced oxidation of Fe-silicates in iron-rich ore to laterite formation, Salobo IOCG mine, Brazil. Chemical Geology, 2020, 539, 119499.	3.3	8
187	9. Carbon Mineralization: From Natural Analogues to Engineered Systems. , 2013, , 305-360.		8
188	Tip-induced displacement and imaging of a multilayered bacterial structure by scanning tunneling microscopy. Ultramicroscopy, 1994, 55, 113-119.	1.9	7
189	Microbial Diversity of Impact-Generated Habitats. Astrobiology, 2016, 16, 775-786.	3.0	7
190	The influence of metal mobility on resource potential in circumneutral pH iron-rich copper mine waste rocks. Journal of Geochemical Exploration, 2020, 219, 106632.	3.2	7
191	Enhanced metal recovery by efficient agglomeration of precipitates in an up-flow fixed-bed bioreactor. Chemical Engineering Journal, 2021, 416, 127662.	12.7	7
192	Alluvial gold in the Bétaré Oya drainage system, east Cameroon. Journal of Sedimentary Environments, 2021, 6, 201-212.	1.5	7
193	Strategising the bioremediation of Brazilian iron ore mines. Critical Reviews in Environmental Science and Technology, 2022, 52, 2749-2771.	12.8	7
194	Waveguide evanescent field scattering microscopy: bacterial biofilms and their sterilization response via UV irradiation. Journal of Biophotonics, 2014, 7, 542-551.	2.3	6
195	Evaluation of operating conditions on sulfate reduction from acidic wastewater in a fixed-bed bioreactor. Minerals Engineering, 2022, 177, 107370.	4.3	6
196	Mobile hydrocarbon microspheres from >2â€billionâ€yearâ€old carbonâ€bearing seams in the South African deep subsurface. Geobiology, 2012, 10, 496-505.	2.4	5
197	Applications of Scanning Electron Microscopy in Geomicrobiology. , 2019, , 148-165.		5
198	Bacterially-mediated supergene alteration and redistribution of copper in mineralised rocks at the Salobo IOCG deposit, Brazil. Ore Geology Reviews, 2019, 115, 103210.	2.7	5

#	Article	IF	CITATIONS
199	Carbon accounting of mined landscapes, and deployment of a geochemical treatment system for enhanced weathering at Woodsreef Chrysotile Mine, NSW, Australia. Journal of Geochemical Exploration, 2021, 220, 106655.	3.2	5
200	Effect of Rock Surfaces on the Corrosion Capability of Yucca Mountain Bacteria. Corrosion, 2004, 60, 75-83.	1.1	4
201	Geology, Life and Habitability. , 2007, , 421-437.		4
202	Electrical Transport along Bacterial Nanowires. Biophysical Journal, 2011, 100, 132a.	0.5	4
203	Analysis of the Potential for Negative CO2 Emission Mine Sites through Bacteria-mediated Carbon Mineralisation: Evidence from Australia. Energy Procedia, 2017, 114, 6124-6132.	1.8	4
204	Biologically facilitated precipitation of metals in low-Fe waters at the sulphidic Mount Chalmers mine, Queensland, Australia. Ore Geology Reviews, 2021, 136, 104238.	2.7	4
205	Biogenic Methane Cycling in a Laboratory Model of an Abandoned Bituminous Coal Mine. Geomicrobiology Journal, 2018, 35, 491-502.	2.0	3
206	The biogeochemical reactivity of phosphate during bioleaching of bornite-chalcocite ore. Applied Geochemistry, 2019, 104, 193-201.	3.0	3
207	Small but mighty: microorganisms offer inspiration for mine remediation and waste stabilisation. Microbiology Australia, 2019, , .	0.4	3
208	Experimental simulations of bacterially-mediated magnetite oxidation and observations on ferricrete formation at the Salobo IOCG mine, Brazil. Applied Geochemistry, 2020, 118, 104628.	3.0	3
209	Ferrugination of biocrusts grown on crushed ferricrete: Potential for slope stabilisation. Ore Geology Reviews, 2021, 135, 104239.	2.7	3
210	Accelerating Bauxite Residue Remediation with Microbial Biotechnology. Minerals, Metals and Materials Series, 2019, , 69-77.	0.4	2
211	Titanium mobility preserved in association with microfossils in an iron-rich duricrust capping an iron ore deposit. Chemical Geology, 2021, 559, 119955.	3.3	2
212	Biogeochemical formation of metalliferous laminations in surficial environments. Mineralogical Magazine, 2021, 85, 49-67.	1.4	2
213	Preservation of Terrestrial Microorganisms and Organics Within Alteration Products of Chondritic Meteorites from the Nullarbor Plain, Australia. Astrobiology, 2022, 22, 399-415.	3.0	2
214	Immobilization of free ionic gold and L-asparagine-complexed ionic gold by Sporosarcina ureae: The importance of organo-gold complexes in gold mobility. Mining, Metallurgy and Exploration, 2000, 17, 129-132.	0.8	1
215	An Economic Analysis of the Worldwide Potential for CO2 Sequestration Through Bacteria-Mediated Carbon Mineralisation at Nickel Mine Sites. SSRN Electronic Journal, 2017, , .	0.4	1
216	Organic Matter Preservation and Incipient Mineralization of Microtubules in 120 Ma Basaltic Glass. Frontiers in Earth Science, 2019, 7, .	1.8	1

#	Article	IF	CITATIONS
217	Eukaryotic Colonization of Micrometer-Scale Cracks in Rocks: A "Microfluidics―Experiment Using Naturally Weathered Meteorites from the Nullarbor Plain, Australia. Astrobiology, 2020, 20, 364-374.	3.0	1
218	A Column Leaching Model of Low-Grade Chalcopyrite Ore: Mineral Preferences and Chemical Reactivity. Minerals (Basel, Switzerland), 2020, 10, 1132.	2.0	1
219	Biosignatures Associated with Freshwater Microbialites. Life, 2020, 10, 66.	2.4	1
220	Paracrystalline Layers of Methanospirillum hungatei GP1., 1993,, 129-142.		1
221	Erratum to Implications of a 3.472–3.333-Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 464-464.	4.0	0
222	Applications of Transmission Electron Microscopy in Geomicrobiology. , 2019, , 166-186.		0
223	Textures and mineralogy of residual supergene copper silicates in oxidised overburden. Minerals Engineering, 2021, 163, 106775.	4.3	0
224	The Geology and Habitability of Terrestrial Planets: Fundamental Requirements for Life. Space Sciences Series of ISSI, 2007, , 7-34.	0.0	0
225	Investigation of Lattice Surface Layers by Scanning Probe Microscopy., 1993,, 243-256.		0
226	Laboratory-Based Bacterial Weathering of the Merensky Reef and Its Impact on Platinum Group Mineral Migration. Economic Geology, 0, , .	3.8	0
227	Role of the substrate on Ni inhibition in biological sulfate reduction. Journal of Environmental Management, 2022, 316, 115216.	7.8	O