David A Lawrence

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6673934/publications.pdf

Version: 2024-02-01

66 2,571 31 49
papers citations h-index g-index

67 67 67 2643
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Differential blood leukocyte populations based on individual variances and age. Immunologic Research, 2022, 70, 114-128.	2.9	4
2	Constitutive activation of Notch signalling and T cell activation characterize a mouse model of autism. Cell Biochemistry and Function, 2022, 40, 164-176.	2.9	2
3	Perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) modify <i>in vitro</i> mitogenand antigen-induced human peripheral blood mononuclear cell (PBMC) responses. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2022, 85, 715-737.	2.3	4
4	Susceptibility to COVIDâ€19 in populations with health disparities: Posited involvement of mitochondrial disorder, socioeconomic stress, and pollutants. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22626.	3.0	13
5	Health disparities: Intracellular consequences of social determinants of health. Toxicology and Applied Pharmacology, 2021, 416, 115444.	2.8	26
6	Exposure, health effects, sensing, and remediation of the emerging PFAS contaminants $\hat{a} \in \text{``Scientific}$ challenges and potential research directions. Science of the Total Environment, 2021, 780, 146399.	8.0	42
7	Development, phenotypes of immune cells in BTBR TItpr3/J mice. Cellular Immunology, 2020, 358, 104223.	3.0	12
8	In Vitro Evaluation of Toxicant Influences on the Immune System. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2020, 84, e95.	1.1	2
9	Immunity and autoantibodies of a mouse strain with autistic-like behavior. Brain, Behavior, & Immunity - Health, 2020, 4, 100069.	2.5	9
10	Wheeze and Food Allergies in Children Born via Cesarean Delivery. American Journal of Epidemiology, 2019, 188, 355-362.	3.4	28
11	Neuroimmunotoxicology of the heavy metal toxicant lead. Advances in Neurotoxicology, 2019, 3, 81-119.	1.9	O
12	From Infections to Anthropogenic Inflicted Pathologies: Involvement of Immune Balance. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2018, 21, 24-46.	6.5	30
13	Crosstalk between the immune, endocrine, and nervous systems in immunotoxicology. Current Opinion in Toxicology, 2018, 10, 37-45.	5.0	19
14	The cationic (calcium and lead) and enzyme conundrum. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2018, 21, 400-413.	6.5	15
15	Sex-specific effects of developmental lead exposure on the immune-neuroendocrine network. Toxicology and Applied Pharmacology, 2017, 334, 142-157.	2.8	38
16	Eliciting parental support for the use of newborn blood spots for pediatric research. BMC Medical Research Methodology, 2016, 16, 14.	3.1	24
17	Newborn Adipokines and Birth Outcomes. Paediatric and Perinatal Epidemiology, 2015, 29, 317-325.	1.7	33
18	Analysis of septic biomarker patterns: prognostic value in predicting septic state. Diagnostic Microbiology and Infectious Disease, 2015, 83, 312-318.	1.8	10

#	Article	IF	CITATIONS
19	A physical/psychological and biological stress combine to enhance endoplasmic reticulum stress. Toxicology and Applied Pharmacology, 2015, 289, 313-322.	2.8	7
20	Metallothionein differentially affects the host response to Listeria infection both with and without an additional stress from cold-restraint. Cell Stress and Chaperones, 2015, 20, 1013-1022.	2.9	5
21	Silica nanoparticles induce oxidative stress and inflammation of human peripheral blood mononuclear cells. Cell Stress and Chaperones, 2014, 19, 777-790.	2.9	60
22	Metallothionein and stress combine to affect multiple organ systems. Cell Stress and Chaperones, 2014, 19, 605-611.	2.9	35
23	Lead Modulation of Macrophages Causes Multiorgan Detrimental Health Effects. Journal of Biochemical and Molecular Toxicology, 2014, 28, 355-372.	3.0	31
24	Stress-induced effects, which inhibit host defenses, alter leukocyte trafficking. Cell Stress and Chaperones, 2013, 18, 279-291.	2.9	19
25	The maternal autoimmune environment affects the social behavior of offspring. Journal of Neuroimmunology, 2013, 258, 51-60.	2.3	35
26	Genetic influences in the development of Amiodaroneâ€induced pulmonary fibrosis (AIPF). FASEB Journal, 2013, 27, 1107.3.	0.5	0
27	Influence of hepatic P450â€mediated Amiodarone metabolism on Amiodaroneâ€induced pulmonary toxicity. FASEB Journal, 2013, 27, 1107.14.	0.5	0
28	Developmental lead effects on behavior and brain gene expression in male and female BALB/cAnNTac mice. NeuroToxicology, 2012, 33, 1005-1020.	3.0	62
29	Aberrant Immune Responses in a Mouse with Behavioral Disorders. PLoS ONE, 2011, 6, e20912.	2.5	133
30	Central nervous system cytokine gene expression: Modulation by lead. Journal of Biochemical and Molecular Toxicology, 2011, 25, 41-54.	3.0	56
31	Impact of developmental lead exposure on splenic factors. Toxicology and Applied Pharmacology, 2010, 247, 105-115.	2.8	55
32	Manipulations of metallothionein gene dose accelerate the response to Listeria monocytogenes. Chemico-Biological Interactions, 2009, 181, 243-253.	4.0	12
33	Autoantibody-mediated neuroinflammation: Pathogenesis of neuropsychiatric systemic lupus erythematosus in the NZM88 murine model. Brain, Behavior, and Immunity, 2008, 22, 949-959.	4.1	34
34	Analysis of the thiol status of peripheral blood leukocytes in rheumatoid arthritis patients. Journal of Leukocyte Biology, 2007, 81, 934-941.	3.3	56
35	\hat{I}^21 -Adrenergic Receptors on Immune Cells Impair Innate Defenses against <i>Listeria</i> li>Lournal of Immunology, 2007, 178, 4876-4884.	0.8	32
36	Cold-Restraint-induced Immune and Biochemical Changes Inhibit Host Resistance to Listeria. , 2007, , 1035-1051.		2

3

#	Article	IF	CITATIONS
37	Posttranscriptional Inhibition of Interferon-Gamma Production by Lead. Toxicological Sciences, 2006, 96, 92-100.	3.1	35
38	Mercury Impairment of Mouse Thymocyte Survival in Vitro: Involvement of Cellular Thiols. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2005, 68, 535-556.	2.3	17
39	Susceptibility of Lupus-Prone Nzm Mouse Strains to Lead Exacerbation of Systemic Lupus Erythematosus Symptoms. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2003, 66, 895-918.	2.3	67
40	Glutathione distribution in normal and oxidatively stressed cells. Experimental Cell Research, 2003, 285, 9-14.	2.6	60
41	Acute cold/restraint stress inhibits host resistance to Listeria monocytogenes via \hat{l}^21 -adrenergic receptors. Brain, Behavior, and Immunity, 2003, 17, 121-133.	4.1	43
42	Immune Changes during Acute Cold/Restraint Stress-Induced Inhibition of Host Resistance to Listeria. Toxicological Sciences, 2003, 74, 325-334.	3.1	26
43	Neonatal Lead Exposure Potentiates Sickness Behavior Induced by Listeria monocytogenes Infection of Mice. Brain, Behavior, and Immunity, 2002, 16, 477-492.	4.1	54
44	Immunomodulation by metals. International Immunopharmacology, 2002, 2, 293-302.	3.8	119
45	Sympathetic nervous system plays a major role in acute cold/restraint stress inhibition of host resistance to Listeria monocytogenes. Journal of Neuroimmunology, 2002, 125, 94-102.	2.3	47
46	Suppression of host resistance to Listeria monocytogenes by acute cold/restraint stress: lack of direct IL-6 involvement. Journal of Neuroimmunology, 2002, 133, 132-143.	2.3	34
47	Glutathione Distribution in Transformed Leukocytes Determined by Immunoelectron Microscopy. Microscopy and Microanalysis, 2001, 7, 70-71.	0.4	0
48	Relationships between IFN \hat{I}^3 , IL-6, Corticosterone, and Listeria monocytogenes Pathogenesis in BALB/c Mice. Cellular Immunology, 2001, 207, 13-18.	3.0	25
49	Central/peripheral nervous system and immune responses. Toxicology, 2000, 142, 189-201.	4.2	56
50	Neuronal cell death and reactive oxygen species. Cellular and Molecular Neurobiology, 2000, 20, 433-450.	3.3	32
51	The Efficiency of Maternal Transfer of Lead and Its Influence on Plasma IgE and Splenic Cellularity of Mice. Toxicological Sciences, 2000, 57, 87-94.	3.1	66
52	Environmental Stressors and Neuroimmunotoxicological Processes. Brain, Behavior, and Immunity, 2000, 14, 231-238.	4.1	12
53	Immunotoxic Effects of Inorganic Lead on Host Resistance of Mice with Different Circling Behavior Preferences. Brain, Behavior, and Immunity, 2000, 14, 305-317.	4.1	34
54	Differential Effects of Lead and cAMP on Development and Activities of Th1- and Th2-Lymphocytes. Toxicological Sciences, 1998, 43, 172-185.	3.1	97

#	Article	IF	CITATION
55	In Vivothe Environmental Pollutants Lead and Mercury Induce Oligoclonal T Cell Responses Skewed toward Type-2 Reactivities. Cellular Immunology, 1997, 179, 185-195.	3.0	82
56	Interleukin-12 Promotes Enhanced Resistance toInfection of Lead-Exposed Mice. Toxicology and Applied Pharmacology, 1997, 147, 180-189.	2.8	68
57	Surface thiols of human lymphocytes and their changes after in vitro and in vivo activation. Journal of Leukocyte Biology, 1996, 60, 611-618.	3.3	89
58	Lead Differentially Modifies Cytokine Productionin Vitroandin Vivo. Toxicology and Applied Pharmacology, 1996, 138, 149-157.	2.8	177
59	Every-other-week methotrexate in patients with rheumatoid arthritis. Arthritis and Rheumatism, 1995, 38, 601-607.	6.7	17
60	Activated T cells enhance nitric oxide production by murine splenic macrophages through gp39 and LFA \hat{a} \in 1. European Journal of Immunology, 1995, 25, 306-309.	2.9	120
61	Immune Modulation by Toxic Metals. , 1995, , 305-337.		27
62	Lead, a major environmental pollutant, is immunomodulatory by its differential effects on CD4+ T cell subsets. Toxicology and Applied Pharmacology, 1991, 111, 13-23.	2.8	97
63	Extracellular metallothionein effects on lymphocyte activities. Molecular Immunology, 1990, 27, 211-219.	2.2	64
64	Differential lymphocyte growth-modifying effects of oxidants: Changes in cytosolic Ca+2. Toxicology and Applied Pharmacology, 1989, 100, 485-497.	2.8	22
65	Four sulfhydryl-modifying compounds cause different structural damage but similar functional damage in murine lymphocytes. Chemico-Biological Interactions, 1988, 68, 137-152.	4.0	23
66	Differential effects of concanavalin A and phytohemagglutinin on murine immunity. Cellular Immunology, 1977, 31, 142-154.	3.0	15