Steven A Rosenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6673424/publications.pdf Version: 2024-02-01

		4658	3915
191	39,817	85	177
papers	citations	h-index	g-index
193	193	193	26599
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Breast Cancers Are Immunogenic: Immunologic Analyses and a Phase II Pilot Clinical Trial Using Mutation-Reactive Autologous Lymphocytes. Journal of Clinical Oncology, 2022, 40, 1741-1754.	1.6	65
2	Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science, 2022, 375, 877-884.	12.6	156
3	A phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung cancers. Cancer Cell, 2022, 40, 479-493.e6.	16.8	64
4	Neoantigen Identification and Response to Adoptive Cell Transfer in Anti–PD-1 NaÃ⁻ve and Experienced Patients with Metastatic Melanoma. Clinical Cancer Research, 2022, 28, 3042-3052.	7.0	18
5	Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer. New England Journal of Medicine, 2022, 386, 2112-2119.	27.0	207
6	Durable remissions in two adult patients with Burkitt lymphoma following anti-CD19 CAR T-cell therapy: a single center experience. Leukemia and Lymphoma, 2022, 63, 2469-2473.	1.3	6
7	Adoptive Cellular Therapy with Autologous Tumor-Infiltrating Lymphocytes and T-cell Receptor–Engineered T Cells Targeting Common p53 Neoantigens in Human Solid Tumors. Cancer Immunology Research, 2022, 10, 932-946.	3.4	52
8	Rapid Identification and Evaluation of Neoantigen-reactive T-Cell Receptors From Single Cells. Journal of Immunotherapy, 2021, 44, 1-8.	2.4	21
9	A machine learning model for ranking candidate HLA class I neoantigens based on known neoepitopes from multiple human tumor types. Nature Cancer, 2021, 2, 563-574.	13.2	38
10	Identification and Validation of T-cell Receptors Targeting <i>RAS</i> Hotspot Mutations in Human Cancers for Use in Cell-based Immunotherapy. Clinical Cancer Research, 2021, 27, 5084-5095.	7.0	26
11	Direct identification of neoantigen-specific TCRs from tumor specimens by high-throughput single-cell sequencing. , 2021, 9, e002595.		31
12	Identification of neoantigen-reactive T lymphocytes in the peripheral blood of a patient with glioblastoma. , 2021, 9, e002882.		13
13	Impact of Prior Treatment on the Efficacy of Adoptive Transfer of Tumor-Infiltrating Lymphocytes in Patients with Metastatic Melanoma. Clinical Cancer Research, 2021, 27, 5289-5298.	7.0	39
14	Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma. Journal of Clinical Investigation, 2021, 131, .	8.2	15
15	Treatment of Patients with T Cells Expressing a Fully-Human Anti-BCMA CAR with a Heavy-Chain Antigen-Recognition Domain Caused High Rates of Sustained Complete Responses and Relatively Mild Toxicity. Blood, 2021, 138, 3837-3837.	1.4	8
16	Long-Term Follow-Up of Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy. Journal of Clinical Oncology, 2020, 38, 3805-3815.	1.6	129
17	Defining best practices for tissue procurement in immuno-oncology clinical trials: consensus statement from the Society for Immunotherapy of Cancer Surgery Committee. , 2020, 8, e001583.		15
18	Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell, 2020, 38, 454-472.	16.8	190

#	Article	IF	CITATIONS
19	Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science, 2020, 370, 1328-1334.	12.6	273
20	High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12826-12835.	7.1	68
21	Impact of Cysteine Residues on MHC Binding Predictions and Recognition by Tumor-Reactive T Cells. Journal of Immunology, 2020, 205, 539-549.	0.8	14
22	Enhanced efficacy and limited systemic cytokine exposure with membrane-anchored interleukin-12 T-cell therapy in murine tumor models. , 2020, 8, e000210.		27
23	Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma. Nature Communications, 2020, 11, 896.	12.8	98
24	Antigen Experienced T Cells from Peripheral Blood Recognize p53 Neoantigens. Clinical Cancer Research, 2020, 26, 1267-1276.	7.0	69
25	mRNA vaccine–induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. Journal of Clinical Investigation, 2020, 130, 5976-5988.	8.2	218
26	Deep and Durable Remissions of Relapsed Multiple Myeloma on a First-in-Humans Clinical Trial of T Cells Expressing an Anti-B-Cell Maturation Antigen (BCMA) Chimeric Antigen Receptor (CAR) with a Fully-Human Heavy-Chain-Only Antigen Recognition Domain. Blood, 2020, 136, 50-51.	1.4	14
27	Exome Sequencing of ABCB5 Identifies Recurrent Melanoma Mutations that Result in Increased Proliferative and Invasive Capacities. Journal of Investigative Dermatology, 2019, 139, 1985-1992.e10.	0.7	6
28	Single-Cell Transcriptome Analysis Reveals Gene Signatures Associated with T-cell Persistence Following Adoptive Cell Therapy. Cancer Immunology Research, 2019, 7, 1824-1836.	3.4	40
29	Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nature Communications, 2019, 10, 449.	12.8	118
30	Immunologic Recognition of a Shared p53 Mutated Neoantigen in a Patient with Metastatic Colorectal Cancer. Cancer Immunology Research, 2019, 7, 534-543.	3.4	100
31	Unique Neoantigens Arise from Somatic Mutations in Patients with Gastrointestinal Cancers. Cancer Discovery, 2019, 9, 1022-1035.	9.4	184
32	Identification of Neoantigen-Reactive Tumor-Infiltrating Lymphocytes in Primary Bladder Cancer. Journal of Immunology, 2019, 202, 3458-3467.	0.8	36
33	BRAF Inhibition: Bridge or Boost to T-cell Therapy?. Clinical Cancer Research, 2019, 25, 2682-2684.	7.0	5
34	Tumor-infiltrating human CD4 ⁺ regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Science Immunology, 2019, 4, .	11.9	152
35	Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. Journal of Clinical Investigation, 2019, 129, 1109-1114.	8.2	193
36	Recognition of human gastrointestinal cancer neoantigens by circulating PD-1+ lymphocytes. Journal of Clinical Investigation, 2019, 129, 4992-5004.	8.2	107

#	Article	IF	CITATIONS
37	Outcomes of Adoptive Cell Transfer With Tumor-infiltrating Lymphocytes for Metastatic Melanoma Patients With and Without Brain Metastases. Journal of Immunotherapy, 2018, 41, 241-247.	2.4	40
38	An Efficient Single-Cell RNA-Seq Approach to Identify Neoantigen-Specific T Cell Receptors. Molecular Therapy, 2018, 26, 379-389.	8.2	78
39	Enhanced detection of neoantigen-reactive T cells targeting unique and shared oncogenes for personalized cancer immunotherapy. JCI Insight, 2018, 3, .	5.0	168
40	Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight, 2018, 3, .	5.0	110
41	Screening Clinical Cell Products for Replication Competent Retrovirus: The National Gene Vector Biorepository Experience. Molecular Therapy - Methods and Clinical Development, 2018, 10, 371-378.	4.1	24
42	T-cell Responses to <i>TP53</i> "Hotspot―Mutations and Unique Neoantigens Expressed by Human Ovarian Cancers. Clinical Cancer Research, 2018, 24, 5562-5573.	7.0	114
43	Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nature Medicine, 2018, 24, 724-730.	30.7	637
44	LIGHT Elevation Enhances Immune Eradication of Colon Cancer Metastases. Cancer Research, 2017, 77, 1880-1891.	0.9	44
45	Routine Computer Tomography Imaging for the Detection of Recurrences in High-Risk Melanoma Patients. Annals of Surgical Oncology, 2017, 24, 947-951.	1.5	26
46	'Final common pathway' of human cancer immunotherapy: targeting random somatic mutations. Nature Immunology, 2017, 18, 255-262.	14.5	361
47	Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science, 2017, 356, 200-205.	12.6	327
48	Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. Lancet Oncology, The, 2017, 18, 792-802.	10.7	203
49	A Pilot Trial of the Combination of Vemurafenib with Adoptive Cell Therapy in Patients with Metastatic Melanoma. Clinical Cancer Research, 2017, 23, 351-362.	7.0	52
50	Long-Duration Complete Remissions of Diffuse Large B Cell Lymphoma after Anti-CD19 Chimeric Antigen Receptor TÂCell Therapy. Molecular Therapy, 2017, 25, 2245-2253.	8.2	227
51	Isolation of T-Cell Receptors Specifically Reactive with Mutated Tumor-Associated Antigens from Tumor-Infiltrating Lymphocytes Based on CD137 Expression. Clinical Cancer Research, 2017, 23, 2491-2505.	7.0	158
52	Metastasectomy Following Immunotherapy with Adoptive Cell Transfer for Patients with Advanced Melanoma. Annals of Surgical Oncology, 2017, 24, 135-141.	1.5	24
53	Treatment of Patients With Metastatic Cancer Using a Major Histocompatibility Complex Class II–Restricted T-Cell Receptor Targeting the Cancer Germline Antigen MAGE-A3. Journal of Clinical Oncology, 2017, 35, 3322-3329.	1.6	204
54	A Rapid Cell Expansion Process for Production of Engineered Autologous CAR-T Cell Therapies. Human Gene Therapy Methods, 2016, 27, 209-218.	2.1	48

#	Article	IF	CITATIONS
55	T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. New England Journal of Medicine, 2016, 375, 2255-2262.	27.0	1,033
56	Randomized, Prospective Evaluation Comparing Intensity of Lymphodepletion Before Adoptive Transfer of Tumor-Infiltrating Lymphocytes for Patients With Metastatic Melanoma. Journal of Clinical Oncology, 2016, 34, 2389-2397.	1.6	293
57	Circulating Tumor DNA as an Early Indicator of Response to T-cell Transfer Immunotherapy in Metastatic Melanoma. Clinical Cancer Research, 2016, 22, 5480-5486.	7.0	84
58	Durable Complete Response from Metastatic Melanoma after Transfer of Autologous T Cells Recognizing 10 Mutated Tumor Antigens. Cancer Immunology Research, 2016, 4, 669-678.	3.4	117
59	Tumor- and Neoantigen-Reactive T-cell Receptors Can Be Identified Based on Their Frequency in Fresh Tumor. Cancer Immunology Research, 2016, 4, 734-743.	3.4	163
60	Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nature Medicine, 2016, 22, 433-438.	30.7	721
61	Stable, Nonviral Expression of Mutated Tumor Neoantigen-specific T-cell Receptors Using the Sleeping Beauty Transposon/Transposase System. Molecular Therapy, 2016, 24, 1078-1089.	8.2	51
62	Long-Term Outcomes Following CD19 CAR T Cell Therapy for B-ALL Are Superior in Patients Receiving a Fludarabine/Cyclophosphamide Preparative Regimen and Post-CAR Hematopoietic Stem Cell Transplantation. Blood, 2016, 128, 218-218.	1.4	98
63	Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. Journal of Clinical Investigation, 2015, 125, 3981-3991.	8.2	328
64	Tumor-Infiltrating Lymphocytes Genetically Engineered with an Inducible Gene Encoding Interleukin-12 for the Immunotherapy of Metastatic Melanoma. Clinical Cancer Research, 2015, 21, 2278-2288.	7.0	310
65	Novel CD4-Based Bispecific Chimeric Antigen Receptor Designed for Enhanced Anti-HIV Potency and Absence of HIV Entry Receptor Activity. Journal of Virology, 2015, 89, 6685-6694.	3.4	95
66	CCR 20th Anniversary Commentary: Autologous T Cells—The Ultimate Personalized Drug for the Immunotherapy of Human Cancer. Clinical Cancer Research, 2015, 21, 5409-5411.	7.0	7
67	A Pilot Trial Using Lymphocytes Genetically Engineered with an NY-ESO-1–Reactive T-cell Receptor: Long-term Follow-up and Correlates with Response. Clinical Cancer Research, 2015, 21, 1019-1027.	7.0	677
68	Adoptive Cell Therapy—Tumor-Infiltrating Lymphocytes, T-Cell Receptors, and Chimeric Antigen Receptors. Seminars in Oncology, 2015, 42, 626-639.	2.2	76
69	Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 2015, 348, 62-68.	12.6	1,911
70	Clinical Scale Zinc Finger Nuclease-mediated Gene Editing of PD-1 in Tumor Infiltrating Lymphocytes for the Treatment of Metastatic Melanoma. Molecular Therapy, 2015, 23, 1380-1390.	8.2	88
71	Immunogenicity of somatic mutations in human gastrointestinal cancers. Science, 2015, 350, 1387-1390.	12.6	639
72	Targeting of HPV-16+ Epithelial Cancer Cells by TCR Gene Engineered T Cells Directed against E6. Clinical Cancer Research, 2015, 21, 4431-4439.	7.0	147

#	Article	IF	CITATIONS
73	Persistence of CTL Clones Targeting Melanocyte Differentiation Antigens Was Insufficient to Mediate Significant Melanoma Regression in Humans. Clinical Cancer Research, 2015, 21, 534-543.	7.0	47
74	Pharmacodynamic Profile and Clinical Response in Patients with B-Cell Malignancies of Anti-CD19 CAR T-Cell Therapy. Blood, 2015, 126, 2042-2042.	1.4	4
75	Cyclophosphamide and Fludarabine Conditioning Chemotherapy Induces a Key Homeostatic Cytokine Profile in Patients Prior to CAR T Cell Therapy. Blood, 2015, 126, 4426-4426.	1.4	14
76	Safety and Response of Incorporating CD19 Chimeric Antigen Receptor T Cell Therapy in Typical Salvage Regimens for Children and Young Adults with Acute Lymphoblastic Leukemia. Blood, 2015, 126, 684-684.	1.4	35
77	Allogeneic T-Cells Expressing an Anti-CD19 Chimeric Antigen Receptor Cause Remissions of B-Cell Malignancies after Allogeneic Hematopoietic Stem Cell Transplantation without Causing Graft-Versus-Host Disease. Blood, 2015, 126, 99-99.	1.4	4
78	PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. Journal of Clinical Investigation, 2014, 124, 2246-2259.	8.2	892
79	Somatic Mutation of GRIN2A in Malignant Melanoma Results in Loss of Tumor Suppressor Activity via Aberrant NMDAR Complex Formation. Journal of Investigative Dermatology, 2014, 134, 2390-2398.	0.7	26
80	Why is sentinel lymph node biopsy 'standard of care' for melanoma?. Nature Reviews Clinical Oncology, 2014, 11, 245-246.	27.6	16
81	Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. , 2014, 2, 25.		112
82	Pancreatic cancer. Oncolmmunology, 2014, 3, e29194.	4.6	10
83	Somatic Mutations in MAP3K5 Attenuate Its Proapoptotic Function in Melanoma through Increased Binding to Thioredoxin. Journal of Investigative Dermatology, 2014, 134, 452-460.	0.7	20
84	Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer. Science, 2014, 344, 641-645.	12.6	1,460
85	Efficient Identification of Mutated Cancer Antigens Recognized by T Cells Associated with Durable Tumor Regressions. Clinical Cancer Research, 2014, 20, 3401-3410.	7.0	364
86	Expression of New York esophageal squamous cell carcinoma-1 in primary and metastatic melanoma. Human Pathology, 2014, 45, 259-267.	2.0	30
87	IL-2: The First Effective Immunotherapy for Human Cancer. Journal of Immunology, 2014, 192, 5451-5458.	0.8	970
88	Anti-CD19 CAR T Cells Administered after Low-Dose Chemotherapy Can Induce Remissions of Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma. Blood, 2014, 124, 550-550.	1.4	26
89	HPV-targeted tumor-infiltrating lymphocytes for cervical cancer Journal of Clinical Oncology, 2014, 32, LBA3008-LBA3008.	1.6	6
90	HPV-targeted tumor-infiltrating lymphocytes for cervical cancer Journal of Clinical Oncology, 2014, 32, LBA3008-LBA3008.	1.6	9

#	Article	IF	CITATIONS
91	Development of a T Cell Receptor Targeting an HLA-A*0201 Restricted Epitope from the Cancer-Testis Antigen SSX2 for Adoptive Immunotherapy of Cancer. PLoS ONE, 2014, 9, e93321.	2.5	19
92	Rapid cell expansion (RACE) technology for production of engineered autologous T-cell therapy: Path toward manageable multicenter clinical trials in aggressive NHL with anti-CD19 CAR Journal of Clinical Oncology, 2014, 32, 3079-3079.	1.6	0
93	Mutated PPP1R3B Is Recognized by T Cells Used To Treat a Melanoma Patient Who Experienced a Durable Complete Tumor Regression. Journal of Immunology, 2013, 190, 6034-6042.	0.8	145
94	Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Medicine, 2013, 19, 747-752.	30.7	979
95	Expression profiling of TCR-engineered T cells demonstrates overexpression of multiple inhibitory receptors in persisting lymphocytes. Blood, 2013, 122, 1399-1410.	1.4	74
96	Autologous-collected anti-CD19 chimeric antigen receptor T cells (19CARTs) for pediatric acute lymphocytic leukemia (ALL) and non-Hodgkin lymphoma (NHL): Clinical activity and cytokine release without graft versus host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) Journal of Clinical Oncology, 2013, 31, 10008-10008.	1.6	0
97	Simplified Method of the Growth of Human Tumor Infiltrating Lymphocytes in Gas-permeable Flasks to Numbers Needed for Patient Treatment. Journal of Immunotherapy, 2012, 35, 283-292.	2.4	114
98	Raising the Bar: The Curative Potential of Human Cancer Immunotherapy. Science Translational Medicine, 2012, 4, 127ps8.	12.4	218
99	Evaluation of chemokine-ligand pathways in pretreatment tumor biopsies as predictive biomarker of response to adoptive therapy in metastatic melanoma patients Journal of Clinical Oncology, 2012, 30, 8576-8576.	1.6	2
100	Study of tumor-infiltrating T-cell reactivity to metastatic gastrointestinal cancers Journal of Clinical Oncology, 2012, 30, e14179-e14179.	1.6	0
101	Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nature Reviews Clinical Oncology, 2011, 8, 577-585.	27.6	285
102	Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T-Cell Transfer Immunotherapy. Clinical Cancer Research, 2011, 17, 4550-4557.	7.0	1,823
103	Personalized Cell Transfer Immunotherapy for B-Cell Malignancies and Solid Cancers. Molecular Therapy, 2011, 19, 1928-1930.	8.2	9
104	Determinants of Successful CD8+ T-Cell Adoptive Immunotherapy for Large Established Tumors in Mice. Clinical Cancer Research, 2011, 17, 5343-5352.	7.0	247
105	Tumor Regression in Patients With Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With NY-ESO-1. Journal of Clinical Oncology, 2011, 29, 917-924.	1.6	1,427
106	T Cells Targeting Carcinoembryonic Antigen Can Mediate Regression of Metastatic Colorectal Cancer but Induce Severe Transient Colitis. Molecular Therapy, 2011, 19, 620-626.	8.2	857
107	Different Adjuvanticity of Incomplete Freund's Adjuvant Derived From Beef or Vegetable Components in Melanoma Patients Immunized With a Peptide Vaccine. Journal of Immunotherapy, 2010, 33, 626-629.	2.4	24
108	Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood, 2010, 116, 3875-3886.	1.4	301

#	Article	IF	CITATIONS
109	CD8+ Enriched "Young―Tumor Infiltrating Lymphocytes Can Mediate Regression of Metastatic Melanoma. Clinical Cancer Research, 2010, 16, 6122-6131.	7.0	269
110	Of Mice, Not Men: No Evidence for Graft-versus-Host Disease in Humans Receiving T-Cell Receptor–Transduced Autologous T Cells. Molecular Therapy, 2010, 18, 1744-1745.	8.2	67
111	Case Report of a Serious Adverse Event Following the Administration of T Cells Transduced With a Chimeric Antigen Receptor Recognizing ERBB2. Molecular Therapy, 2010, 18, 843-851.	8.2	2,079
112	Adoptive cell therapy for the treatment of patients with metastatic melanoma. Current Opinion in Immunology, 2009, 21, 233-240.	5.5	539
113	Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Reviews Cancer, 2008, 8, 299-308.	28.4	1,404
114	Overcoming obstacles to the effective immunotherapy of human cancer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12643-12644.	7.1	42
115	Minimally Cultured Tumor-infiltrating Lymphocytes Display Optimal Characteristics for Adoptive Cell Therapy. Journal of Immunotherapy, 2008, 31, 742-751.	2.4	236
116	Construction and Pre-Clinical Evaluation of An Anti-CD19 Chimeric Antigen Receptor. Blood, 2008, 112, 4623-4623.	1.4	1
117	IL12 polarization of mouse and human T ells: implications for adoptive immunotherapy. FASEB Journal, 2008, 22, .	0.5	0
118	Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes. Science, 2006, 314, 126-129.	12.6	2,352
119	IL-7 Administration to Humans Leads to Expansion of CD8+ and CD4+ Cells but a Relative Decrease of CD4+ T-Regulatory Cells. Journal of Immunotherapy, 2006, 29, 313-319.	2.4	397
120	Altered CD8+ T-Cell Responses When Immunizing With Multiepitope Peptide Vaccines. Journal of Immunotherapy, 2006, 29, 224-231.	2.4	31
121	Persistence of Multiple Tumor-Specific T-Cell Clones Is Associated with Complete Tumor Regression in a Melanoma Patient Receiving Adoptive Cell Transfer Therapy. Journal of Immunotherapy, 2005, 28, 53-62.	2.4	198
122	Tumor Progression Can Occur despite the Induction of Very High Levels of Self/Tumor Antigen-Specific CD8+ T Cells in Patients with Melanoma. Journal of Immunology, 2005, 175, 6169-6176.	0.8	428
123	T Cells Associated with Tumor Regression Recognize Frameshifted Products of the <i>CDKN2A</i> Tumor Suppressor Gene Locus and a Mutated HLA Class I Gene Product. Journal of Immunology, 2004, 172, 6057-6064.	0.8	114
124	Cutting Edge: Persistence of Transferred Lymphocyte Clonotypes Correlates with Cancer Regression in Patients Receiving Cell Transfer Therapy. Journal of Immunology, 2004, 173, 7125-7130.	0.8	442
125	Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14639-14645.	7.1	323
126	Reply to "Cancer vaccines: pessimism in check". Nature Medicine, 2004, 10, 1279-1280.	30.7	19

#	Article	IF	CITATIONS
127	Development of effective immunotherapy for the treatment of patients with cancer. Journal of the American College of Surgeons, 2004, 198, 685-696.	0.5	50
128	Inability to Immunize Patients with Metastatic Melanoma Using Plasmid DNA Encoding the gp100 Melanoma-Melanocyte Antigen. Human Gene Therapy, 2003, 14, 709-714.	2.7	105
129	Generation of Tumor-Infiltrating Lymphocyte Cultures for Use in Adoptive Transfer Therapy for Melanoma Patients. Journal of Immunotherapy, 2003, 26, 332-342.	2.4	598
130	Cell Transfer Therapy for Cancer: Lessons from Sequential Treatments of a Patient With Metastatic Melanoma. Journal of Immunotherapy, 2003, 26, 385-393.	2.4	58
131	Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma. Clinical Cancer Research, 2003, 9, 2973-80.	7.0	82
132	Impact of the Number of Treatment Courses on the Clinical Response of Patients Who Receive High-Dose Bolus Interleukin-2. Journal of Clinical Oncology, 2000, 18, 1954-1959.	1.6	36
133	Threshold levels of gene expression of the melanoma antigen gp100 correlate with tumor cell recognition by cytotoxic T lymphocytes. , 2000, 86, 818-826.		52
134	Expansion and Characterization of T Cells Transduced with a Chimeric Receptor against Ovarian Cancer. Human Gene Therapy, 2000, 11, 2377-2387.	2.7	54
135	Real-Time Quantitative Polymerase Chain Reaction Assessment of Immune Reactivity in Melanoma Patients After Tumor Peptide Vaccination. Journal of the National Cancer Institute, 2000, 92, 1336-1344.	6.3	102
136	Threshold levels of gene expression of the melanoma antigen gp100 correlate with tumor cell recognition by cytotoxic T lymphocytes. International Journal of Cancer, 2000, 86, 818-826.	5.1	3
137	Identification of a Novel Major Histocompatibility Complex Class Il–restricted Tumor Antigen Resulting from a Chromosomal Rearrangement Recognized by CD4+ T Cells. Journal of Experimental Medicine, 1999, 189, 1659-1668.	8.5	126
138	Human tumor antigens for cancer vaccine development. Immunological Reviews, 1999, 170, 85-100.	6.0	268
139	A new era of cancer immunotherapy: converting theory to performance. Ca-A Cancer Journal for Clinicians, 1999, 49, 70-73.	329.8	31
140	Cloning Genes Encoding MHC Class II-Restricted Antigens: Mutated CDC27 as a Tumor Antigen. Science, 1999, 284, 1351-1354.	12.6	303
141	A T cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fc-γ chain chimeric receptor gene recognizing a human ovarian cancer antigen. Nature Medicine, 1998, 4, 168-172.	30.7	63
142	Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Medicine, 1998, 4, 321-327.	30.7	1,693
143	Trends in the safety of high dose bolus interleukin-2 administration in patients with metastatic cancer. Cancer, 1998, 83, 797-805.	4.1	176
144	Heterogeneous expression of melanoma-associated antigens and HLA-A2 in metastatic melanoma in vivo. , 1998, 75, 517-524.		160

#	Article	IF	CITATIONS
145	Use of recombinant poxviruses to stimulate anti-melanoma T cell reactivity. Annals of Surgical Oncology, 1998, 5, 64-76.	1.5	30
146	Trends in the safety of high dose bolus interleukin-2 administration in patients with metastatic cancer. , 1998, 83, 797.		1
147	Enhancing Efficacy of Recombinant Anticancer Vaccines With Prime/Boost Regimens That Use Two Different Vectors. Journal of the National Cancer Institute, 1997, 89, 1595-1601.	6.3	145
148	Immunobiology of Human Melanoma Antigens MART-1 and gp100 and their Use for Immuno-Gene Therapy. International Reviews of Immunology, 1997, 14, 173-192.	3.3	87
149	Human tumor antigens recognized by T-cells. Immunologic Research, 1997, 16, 313-339.	2.9	119
150	Human tumor antigens recognized by T lymphocytes: implications for cancer therapy. Journal of Leukocyte Biology, 1996, 60, 296-309.	3.3	43
151	Adoptive cellular immunotherapy of cancer in mice using allogeneic T-cells. Annals of Surgical Oncology, 1996, 3, 67-73.	1.5	12
152	T-cell recognition of self peptides as tumor rejection antigens. Immunologic Research, 1996, 15, 179-190.	2.9	53
153	The hematologic toxicity of interleukin-2 in patients with metastatic melanoma and renal cell carcinoma. Cancer, 1995, 75, 1030-1037.	4.1	50
154	The use of polyethylene glycol-modified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma. Cancer, 1995, 76, 687-694.	4.1	79
155	Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nature Medicine, 1995, 1, 330-336.	30.7	372
156	The use of polyethylene glycol-modified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma. , 1995, 76, 687.		1
157	Localization of111Indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. Cancer, 1994, 73, 1731-1737.	4.1	204
158	Cardiopulmonary toxicity of treatment with high dose interleukin-2 in 199 consecutive patients with metastatic melanoma or renal cell carcinoma. Cancer, 1994, 74, 3212-3222.	4.1	104
159	Melanoma-specific CD4+ T lymphocytes recognize human melanoma antigens processed and presented by epstein-barr virus-transformed B cells. International Journal of Cancer, 1994, 58, 69-79.	5.1	78
160	Localization of 111Indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. , 1994, 73, 1731.		1
161	Propagation of Mouse and Human T Cells with Defined Antigen Specificity and Function. Novartis Foundation Symposium, 1994, 187, 179-197.	1.1	4
162	Generation of specific anti-melanoma reactivity by stimulation of human tumor-infiltrating lymphocytes with MAGE-1 synthetic peptide. Cancer Immunology, Immunotherapy, 1994, 39, 105-116.	4.2	4

#	Article	IF	CITATIONS
163	Regression of Metastatic Renal Cell Carcinoma After Cytoreductive Nephrectomy. Journal of Urology, 1993, 150, 463-466.	0.4	132
164	Surgical resection of metastatic renal cell carcinoma and melanoma after response to interleukin-2-based immunotherapy. Cancer, 1992, 69, 1850-1855.	4.1	61
165	Thyroid dysfunction associated with immunotherapy for patients with cancer. Cancer, 1991, 68, 2384-2390.	4.1	75
166	Preparative Cytoreductive Surgery in Patients with Metastatic Renal Cell Carcinoma Treated with Adoptive Immunotherapy with Interleukin-2 or Interleukin-2 Plus Lymphokine Activated Killer Cells. Journal of Urology, 1990, 144, 614-617.	0.4	90
167	Myocarditis or acute myocardial infarction associated with interleukin-2 therapy for cancer. Cancer, 1990, 66, 1513-1516.	4.1	47
168	Extremity soft tissue sarcomas: Analysis of prognostic variables in 300 cases and evaluation of tumor necrosis as a factor in stratifying higher-grade sarcomas. Journal of Surgical Oncology, 1989, 41, 263-273.	1.7	61
169	Overview of interleukin-2 as an immunotherapeutic agent. Journal of Surgical Oncology, 1989, 5, 385-390.	1.4	41
170	In Vivo Distribution of Adoptively Transferred Indium- 111- Labeled Tumor Infiltrating Lymphocytes and Peripheral Blood Lymphocytes in Patients With Metastatic Melanoma. Journal of the National Cancer Institute, 1989, 81, 1709-1717.	6.3	176
171	Colonic perforation: An unusual complication of therapy with high-dose Interleukin-2. Cancer, 1988, 62, 2350-2353.	4.1	31
172	Cross linking of anti-B16 melanoma monoclonal antibodies to lymphokine activated killer (LAK) cells: possible role in the therapy of B16 melanoma. Clinical and Experimental Metastasis, 1988, 6, 387-400.	3.3	2
173	High-grade soft tissue sarcomas of the extremities. Cancer, 1986, 58, 190-205.	4.1	273
174	A phase II study of ifosfamide in the treatment of recurrent sarcomas in young people. Cancer Chemotherapy and Pharmacology, 1986, 18, S25-S28.	2.3	59
175	A randomized, prospective trial of adjuvant chemotherapy in adults with soft tissue sarcomas of the head and neck, breast, and trunk. Cancer, 1985, 55, 1206-1214.	4.1	141
176	Lymphokine-activated killer (LAK) cells. Analysis of factors relevant to the immunotherapy of human cancer. Cancer, 1985, 55, 1327-1333.	4.1	125
177	Differing determinants of prognosis following resection of pulmonary metastases from osteogenic and soft tissue sarcoma patients. Cancer, 1985, 55, 1361-1366.	4.1	146
178	A Large Scale Method of Separating Multiple Lymphokines Secreted by the Murine El-4 Thymoma. Immunopharmacology and Immunotoxicology, 1985, 7, 17-31.	0.8	2
179	Phase I study of the adoptive immunotherapy of human cancer with lectin activated autologous mononuclear cells. Cancer, 1984, 53, 896-905.	4.1	115
180	The significance of bone scan abnormalities in patients with primary osteogenic sarcoma. Journal of Surgical Oncology, 1984, 26, 122-129.	1.7	11

#	Article	IF	CITATIONS
181	Prospective randomized evaluation of adjuvant chemotherapy in adults with soft tissue sarcomas of the extremities. Cancer, 1983, 52, 424-434.	4.1	194
182	A prospective evaluation of delta-9-tetrahydrocannabinol as an antiemetic in patients receiving adriamycin and cytoxan chemotherapy. Cancer, 1981, 47, 1746-1751.	4.1	76
183	The effects of postoperative adjuvant chemotherapy and radiotherapy on testicular function in men undergoing treatment for soft tissue sarcoma. Cancer, 1981, 47, 2368-2374.	4.1	81
184	Evaluation of computed tomography in the detection of pulmonary metastases.A prospective study. Cancer, 1979, 43, 913-916.	4.1	173
185	Prognostic significance of alkaline phosphatase measurements in patients with osteogenic sarcoma receiving chemotherapy. Cancer, 1979, 43, 2178-2181.	4.1	56
186	Alkaline phosphatase levels in osteosarcoma tissue are related to prognosis. Cancer, 1979, 44, 2291-2293.	4.1	51
187	Anaphylactoid type reactions in two patients receiving high dose intravenous methotrexate. Cancer, 1978, 41, 52-55.	4.1	54
188	Severe thrombocytopenia following intralesional BCG therapy. Cancer, 1978, 41, 820-826.	4.1	16
189	Clinical and immunologic studies of disseminated BCG infection. Cancer, 1978, 41, 1771-1780.	4.1	44
190	Clinical course and management of accidental adriamycin extravasation. Cancer, 1977, 40, 2053-2056.	4.1	119
191	Future prospects for immunotherapy. Cancer, 1975, 36, 821-824.	4.1	5