Stiven Forti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6673153/publications.pdf

Version: 2024-02-01

		236925	206112
55	2,395	25	48
papers	citations	h-index	g-index
57	57	57	3399
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ultra-clean high-mobility graphene on technologically relevant substrates. Nanoscale, 2022, 14, 2167-2176.	5.6	22
2	Ultrafast hot carrier transfer in WS2/graphene large area heterostructures. Npj 2D Materials and Applications, 2022, 6, .	7.9	17
3	Thermal stability of monolayer WS ₂ in BEOL conditions. JPhys Materials, 2021, 4, 024002.	4.2	7
4	Stacking Relations and Substrate Interaction of Graphene on Copper Foil. Advanced Materials Interfaces, 2021, 8, 2002025.	3.7	4
5	Synthesis of Large-Scale Monolayer 1T′-MoTe ₂ and Its Stabilization <i>via</i> Scalable hBN Encapsulation. ACS Nano, 2021, 15, 4213-4225.	14.6	61
6	Ultrafast Charge Separation in Bilayer WS2/Graphene Heterostructure Revealed by Time- and Angle-Resolved Photoemission Spectroscopy. Frontiers in Physics, 2021, 9, .	2.1	9
7	Synthesis of large-area rhombohedral few-layer graphene by chemical vapor deposition on copper. Carbon, 2021, 177, 282-290.	10.3	22
8	Black Phosphorus n-Type Doping by Cu: A Microscopic Surface Investigation. Journal of Physical Chemistry C, 2021, 125, 13477-13484.	3.1	7
9	Survival of Floquet–Bloch States in the Presence of Scattering. Nano Letters, 2021, 21, 5028-5035.	9.1	41
10	Local Optical Properties in CVD-Grown Monolayer WS ₂ Flakes. Journal of Physical Chemistry C, 2021, 125, 16059-16065.	3.1	21
11	Temperature-Dependent Bending Rigidity of AB -Stacked Bilayer Graphene. Physical Review Letters, 2021, 127, 266102.	7.8	3
12	Microscopic Understanding of Ultrafast Charge Transfer in van der Waals Heterostructures. Physical Review Letters, 2021, 127, 276401.	7.8	13
13	Editorial: Optoelectronic Properties of Two-Dimensional Systems. Frontiers in Physics, 2021, 9, .	2.1	O
14	Deterministic direct growth of WS ₂ on CVD graphene arrays. 2D Materials, 2020, 7, 014002.	4.4	17
15	Stress–strain in electron-beam activated polymeric micro-actuators. Journal of Applied Physics, 2020, 128, 115104.	2.5	3
16	Ultrafast, Zero-Bias, Graphene Photodetectors with Polymeric Gate Dielectric on Passive Photonic Waveguides. ACS Nano, 2020, 14, 11190-11204.	14.6	48
17	Epitaxial Growth of Wafer-Scale Molybdenum Disulfide/Graphene Heterostructures by Metal–Organic Vapor-Phase Epitaxy and Their Application in Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 44335-44344.	8.0	28
18	Scanning Probe Spectroscopy of WS2/Graphene Van Der Waals Heterostructures. Nanomaterials, 2020, 10, 2494.	4.1	4

#	Article	IF	CITATIONS
19	Hydrogenâ€Intercalated Graphene on SiC as Platform for Hybrid Superconductor Devices. Advanced Quantum Technologies, 2020, 3, 2000082.	3.9	4
20	Direct evidence for efficient ultrafast charge separation in epitaxial WS ₂ /graphene heterostructures. Science Advances, 2020, 6, eaay0761.	10.3	64
21	Semiconductor to metal transition in two-dimensional gold and its van der Waals heterostack with graphene. Nature Communications, 2020, 11, 2236.	12.8	52
22	Optical dielectric function of two-dimensional WS2 on epitaxial graphene. 2D Materials, 2020, 7, 025024.	4.4	10
23	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333
24	Edge Defects Promoted Oxidation of Monolayer WS ₂ Synthesized on Epitaxial Graphene. Journal of Physical Chemistry C, 2020, 124, 9035-9044.	3.1	22
25	$30 \hat{A}^o$ -Twisted Bilayer Graphene Quasicrystals from Chemical Vapor Deposition. Nano Letters, 2020, 20, 3313-3319.	9.1	60
26	Back Cover: Hydrogenâ€Intercalated Graphene on SiC as Platform for Hybrid Superconductor Devices (Adv. Quantum Technol. 12/2020). Advanced Quantum Technologies, 2020, 3, 2070123.	3.9	0
27	Weak localization measurements of electronic scattering rates in Li-doped epitaxial graphene. Physical Review B, 2019, 100, .	3.2	4
28	Waferâ€Scale Synthesis of Graphene on Sapphire: Toward Fabâ€Compatible Graphene. Small, 2019, 15, e1904906.	10.0	61
29	Local tuning of WS2 photoluminescence using polymeric micro-actuators in a monolithic van der Waals heterostructure. Applied Physics Letters, 2019, 115, .	3.3	9
30	Introducing strong correlation effects into graphene by gadolinium intercalation. Physical Review B, 2019, 100, .	3.2	55
31	Fabâ€Compatible Graphene: Waferâ€Scale Synthesis of Graphene on Sapphire: Toward Fabâ€Compatible Graphene (Small 50/2019). Small, 2019, 15, 1970273.	10.0	2
32	STM study of exfoliated few layer black phosphorus annealed in ultrahigh vacuum. 2D Materials, 2019, 6, 015005.	4.4	14
33	Patterned tungsten disulfide/graphene heterostructures for efficient multifunctional optoelectronic devices. Nanoscale, 2018, 10, 4332-4338.	5. 6	28
34	Superlubricity of epitaxial monolayer WS2 on graphene. Nano Research, 2018, 11, 5946-5956.	10.4	58
35	Electronic properties of single-layer tungsten disulfide on epitaxial graphene on silicon carbide. Nanoscale, 2017, 9, 16412-16419.	5.6	39
36	Mini-Dirac cones in the band structure of a copper intercalated epitaxial graphene superlattice. 2D Materials, 2016, 3, 035003.	4.4	30

#	Article	IF	Citations
37	Intercalation of graphene on SiC(0001) via ion implantation. Physical Review B, 2016, 94, .	3.2	23
38	Alkali doping of graphene: The crucial role of high-temperature annealing. Physical Review B, 2016, 94, .	3.2	10
39	Ballistic bipolar junctions in chemically gated graphene ribbons. Scientific Reports, 2015, 5, 9955.	3.3	22
40	Evidence for superconductivity in Li-decorated monolayer graphene. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11795-11799.	7.1	269
41	Revealing the electronic band structure of quasi-free trilayer graphene on SiC(0001). Materials Research Society Symposia Proceedings, 2014, 1693, 159.	0.1	3
42	Bipolar gating of epitaxial graphene by intercalation of Ge. Applied Physics Letters, 2014, 104, .	3.3	31
43	Epitaxial graphene on SiC: from carrier density engineering to quasi-free standing graphene by atomic intercalation. Journal Physics D: Applied Physics, 2014, 47, 094013.	2.8	50
44	Local transport measurements on epitaxial graphene. Applied Physics Letters, 2013, 103, .	3.3	23
45	Revealing the atomic structure of the buffer layer between SiC(0 001) and epitaxial graphene. Carbon, 2013, 51, 249-254.	10.3	135
46	Revealing the electronic band structure of trilayer graphene on SiC: An angle-resolved photoemission study. Physical Review B, 2013, 88, .	3.2	73
47	Adatoms and Clusters of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>3</mml:mn><mml:mi>d</mml:mi></mml:math> Transition Metals on Graphene: Electronic and Magnetic Configurations. Physical Review Letters, 2013, 110, 136804.	7.8	159
48	Influence of the degree of decoupling of graphene on the properties of transition metal adatoms. Physical Review B, 2013, 87, .	3.2	41
49	Manipulation of plasmon electron–hole coupling in quasi-free-standing epitaxial graphene layers. New Journal of Physics, 2012, 14, 103045.	2.9	13
50	Engineering the electronic structure of epitaxial graphene by transfer doping and atomic intercalation. MRS Bulletin, 2012, 37, 1177-1186.	3.5	44
51	Orbital selective coupling between Ni adatoms and graphene Dirac electrons. Physical Review B, 2012, 85, .	3.2	27
52	Large-area homogeneous quasifree standing epitaxial graphene on SiC(0001): Electronic and structural characterization. Physical Review B, 2011, 84, .	3.2	103
53	Ambipolar doping in quasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation. Physical Review B, 2011, 84, .	3.2	164
54	Controlled Polymorphism in Titanyl Phthalocyanine on Mica by Hyperthermal Beams: A Micro-Raman Analysis. Journal of Physical Chemistry C, 2010, 114, 7038-7044.	3.1	21

STIVEN FORTI

#	Article	IF	CITATIONS
55	Case studies of electrical characterisation of graphene by terahertz time-domain spectroscopy. 2D Materials, 0, , .	4.4	11