Mathieu Hatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6672926/publications.pdf Version: 2024-02-01

Μλτηιείι Ηλττ

#	Article	IF	CITATIONS
1	Prediction of recurrence after surgery in colorectal cancer patients using radiomics from diagnostic contrast-enhanced computed tomography: a two-center study. European Radiology, 2022, 32, 405-414.	4.5	11
2	The added value of PSMA PET/MR radiomics for prostate cancer staging. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 527-538.	6.4	38
3	Head and neck tumor segmentation in PET/CT: The HECKTOR challenge. Medical Image Analysis, 2022, 77, 102336.	11.6	114
4	Overview of the HECKTOR Challenge at MICCAI 2021: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT Images. Lecture Notes in Computer Science, 2022, , 1-37.	1.3	39
5	External Validation of a Radiomics Model for the Prediction of Complete Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer. Cancers, 2022, 14, 1079.	3.7	11
6	Radiomics in PET/CT: Current Status and Future AI-Based Evolutions. Seminars in Nuclear Medicine, 2021, 51, 126-133.	4.6	33
7	Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer. Radiotherapy and Oncology, 2021, 155, 144-150.	0.6	33
8	Squeeze-and-Excitation Normalization for Automated Delineation of Head and Neck Primary Tumors in Combined PET and CT Images. Lecture Notes in Computer Science, 2021, , 37-43.	1.3	47
9	Radiogenomics in Colorectal Cancer. Cancers, 2021, 13, 973.	3.7	18
10	Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3444-3456.	6.4	15
11	[18F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3432-3443.	6.4	32
12	Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Physica Medica, 2021, 83, 108-121.	0.7	85
13	Can alternative PET reconstruction schemes improve the prognostic value of radiomic features in non-small cell lung cancer?. Methods, 2021, 188, 73-83.	3.8	7
14	Comparison and Fusion of Machine Learning Algorithms for Prospective Validation of PET/CT Radiomic Features Prognostic Value in Stage II-III Non-Small Cell Lung Cancer. Diagnostics, 2021, 11, 675.	2.6	17
15	Simultaneous Mapping of Vasculature, Hypoxia, and Proliferation Using Dynamic Susceptibility Contrast MRI, ¹⁸ F-FMISO PET, and ¹⁸ F-FLT PET in Relation to Contrast Enhancement in Newly Diagnosed Glioblastoma. Journal of Nuclear Medicine, 2021, 62, 1349-1356.	5.0	14
16	Radiomics Analysis of 3D Dose Distributions to Predict Toxicity of Radiotherapy for Cervical Cancer. Journal of Personalized Medicine, 2021, 11, 398.	2.5	12
17	Statistical harmonization can improve the development of a multicenter CTâ€based radiomic model predictive of nonresponse to induction chemotherapy in laryngeal cancers. Medical Physics, 2021, 48, 4099-4109.	3.0	15
18	A transfer learning approach to facilitate ComBat-based harmonization of multicentre radiomic features in new datasets. PLoS ONE, 2021, 16, e0253653.	2.5	21

#	Article	IF	CITATIONS
19	Squeeze-and-Excitation Normalization for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2021, , 366-373.	1.3	7
20	Guidelines on Setting Up Stations for Remote Viewing of Nuclear Medicine and Molecular Imaging Studies During COVID-19. Journal of Nuclear Medicine Technology, 2021, 49, 2-6.	0.8	4
21	Accurate Tumor Delineation vs. Rough Volume of Interest Analysis for 18F-FDG PET/CT Radiomics-Based Prognostic Modeling inNon-Small Cell Lung Cancer. Frontiers in Oncology, 2021, 11, 726865.	2.8	5
22	Development of a Radiomic-Based Model Predicting Lymph Node Involvement in Prostate Cancer Patients. Cancers, 2021, 13, 5672.	3.7	14
23	Pretreatment ¹⁸ F-FDG PET/CT Radiomics Predict Local Recurrence in Patients Treated with Stereotactic Body Radiotherapy for Early-Stage Non–Small Cell Lung Cancer: A Multicentric Study. Journal of Nuclear Medicine, 2020, 61, 814-820.	5.0	126
24	Use of radiomics in the radiation oncology setting: Where do we stand and what do we need?. Cancer Radiotherapie: Journal De La Societe Francaise De Radiotherapie Oncologique, 2020, 24, 755-761.	1.4	8
25	Non-invasive imaging prediction of tumor hypoxia: A novel developed and externally validated CT and FDG-PET-based radiomic signatures. Radiotherapy and Oncology, 2020, 153, 97-105.	0.6	19
26	Use of Baseline 18F-FDG PET/CT to Identify Initial Sub-Volumes Associated With Local Failure After Concomitant Chemoradiotherapy in Locally Advanced Cervical Cancer. Frontiers in Oncology, 2020, 10, 678.	2.8	5
27	Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Molecular Imaging and Biology, 2020, 22, 1132-1148.	2.6	90
28	The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020, 295, 328-338.	7.3	1,869
29	Transcriptomics in cancer revealed by Positron Emission Tomography radiomics. Scientific Reports, 2020, 10, 5660.	3.3	13
30	External Validation of an MRI-Derived Radiomics Model to Predict Biochemical Recurrence after Surgery for High-Risk Prostate Cancer. Cancers, 2020, 12, 814.	3.7	50
31	Potential Complementary Value of Noncontrast and Contrast Enhanced CT Radiomics in Colorectal Cancers. Academic Radiology, 2019, 26, 469-479.	2.5	29
32	Radiogenomics-based cancer prognosis in colorectal cancer. Scientific Reports, 2019, 9, 9743.	3.3	38
33	Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2630-2637.	6.4	91
34	Revisiting the identification of tumor sub-volumes predictive of residual uptake after (chemo)radiotherapy: influence of segmentation methods on 18F-FDG PET/CT images. Scientific Reports, 2019, 9, 14925.	3.3	6
35	EP-1476 Validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer. Radiotherapy and Oncology, 2019, 133, S800.	0.6	1
36	EP-1936 PET/CT Radiomics predict local recurrence in patients treated with SBRT for early-stage NSCLC. Radiotherapy and Oncology, 2019, 133, S1054.	0.6	0

#	Article	IF	CITATIONS
37	Radiomics: Data Are Also Images. Journal of Nuclear Medicine, 2019, 60, 38S-44S.	5.0	74
38	Multicentric validation of radiomics findings: challenges and opportunities. EBioMedicine, 2019, 47, 20-21.	6.1	13
39	MRI-Derived Radiomics to Guide Post-operative Management for High-Risk Prostate Cancer. Frontiers in Oncology, 2019, 9, 807.	2.8	35
40	PO-0733 Non-invasive imaging for tumor hypoxia: a novel validated CT and FDG-PET-based Radiomic signature Radiotherapy and Oncology, 2019, 133, S376-S377.	0.6	0
41	PO-0857 MRI-derived radiomics to select patients with high-risk prostate cancer for adjuvant radiotherapy. Radiotherapy and Oncology, 2019, 133, S451-S452.	0.6	0
42	MRI-derived radiomics: methodology and clinical applications in the field of pelvic oncology. British Journal of Radiology, 2019, 92, 20190105.	2.2	38
43	Validation of an MRI-Derived Radiomics Model to Guide Patients Selection for Adjuvant Radiotherapy after Prostatectomy for High-Risk Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2019, 105, E266-E267.	0.8	1
44	Machine (Deep) Learning Methods for Image Processing and Radiomics. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 104-108.	3.7	89
45	Image Enhancement With PDEs and Nonconservative Advection Flow Fields. IEEE Transactions on Image Processing, 2019, 28, 3075-3088.	9.8	15
46	Comparison of Radiomics Models Built Through Machine Learning in a Multicentric Context With Independent Testing: Identical Data, Similar Algorithms, Different Methodologies. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 192-200.	3.7	16
47	Reoxygenation during radiotherapy in intermediate-risk prostate cancer. Radiotherapy and Oncology, 2019, 133, 16-19.	0.6	23
48	External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 864-877.	6.4	138
49	Machine learning for radiomics-based multimodality and multiparametric modeling. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2019, 63, 323-338.	0.7	33
50	Prediction of outcome using pretreatment 18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 768-786.	6.4	193
51	Independent component analysis for rectal bleeding prediction following prostate cancer radiotherapy. Radiotherapy and Oncology, 2018, 126, 263-269.	0.6	6
52	Prognostic Value of Head and Neck Tumor Proliferative Sphericity From 3'-Deoxy-3'-[¹⁸ F] Fluorothymidine Positron Emission Tomography. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 33-40.	3.7	12
53	FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 365-375.	6.4	125
54	Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 630-641.	6.4	40

Матніеи Натт

#	Article	lF	CITATIONS
55	The first MICCAI challenge on PET tumor segmentation. Medical Image Analysis, 2018, 44, 177-195.	11.6	116
56	Responsible Radiomics Research for Faster Clinical Translation. Journal of Nuclear Medicine, 2018, 59, 189-193.	5.0	154
57	Image Filtering with Advectors. , 2018, , .		0
58	Heterogeneity analysis of 18F-FDG PET imaging in oncology: clinical indications and perspectives. Clinical and Translational Imaging, 2018, 6, 393-410.	2.1	9
59	SP-0355: Machine learning for radiomics and outcome modeling. Radiotherapy and Oncology, 2018, 127, S183.	0.6	0
60	FDG PET radiomics: a review of the methodological aspects. Clinical and Translational Imaging, 2018, 6, 379-391.	2.1	26
61	Evaluation of tumor hypoxia prior to radiotherapy in intermediate-risk prostate cancer using 18F-fluoromisonidazole PET/CT: a pilot study. Oncotarget, 2018, 9, 10005-10015.	1.8	16
62	Characterization of PET/CT images using texture analysis: the past, the present… any future?. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 151-165.	6.4	376
63	Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211. Medical Physics, 2017, 44, e1-e42.	3.0	162
64	Toward a standard for the evaluation of <scp>PET</scp> â€Autoâ€Segmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation. Medical Physics, 2017, 44, 4098-4111.	3.0	35
65	Radiomics in PET/CT: More Than Meets the Eye?. Journal of Nuclear Medicine, 2017, 58, 365-366.	5.0	83
66	A framework based on hidden Markov trees for multimodal <scp>PET</scp> / <scp>CT</scp> image coâ€segmentation. Medical Physics, 2017, 44, 5835-5848.	3.0	9
67	Evaluation of the tumor registration error in biopsy procedures performed under realâ€ŧime PET/CT guidance. Medical Physics, 2017, 44, 5089-5095.	3.0	5
68	Reliability of PET/CT Shape and Heterogeneity Features in Functional and Morphologic Components of Non–Small Cell Lung Cancer Tumors: A Repeatability Analysis in a Prospective Multicenter Cohort. Journal of Nuclear Medicine, 2017, 58, 406-411.	5.0	131
69	Haralick textural features on <i>T</i> ₂ -weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer. Journal of Magnetic Resonance Imaging, 2017, 45, 103-117.	3.4	138
70	Comparison of Tumor Uptake Heterogeneity Characterization Between Static and Parametric ¹⁸ F-FDG PET Images in Non–Small Cell Lung Cancer. Journal of Nuclear Medicine, 2016, 57, 1033-1039.	5.0	31
71	Performance of automatic image segmentation algorithms for calculating total lesion glycolysis for early response monitoring in non-small cell lung cancer patients during concomitant chemoradiotherapy. Radiotherapy and Oncology, 2016, 119, 473-479.	0.6	17
72	Prognosis classification in glioblastoma multiforme using multimodal MRI derived heterogeneity textural features: impact of pre-processing choices. , 2016, , .		6

#	Article	IF	CITATIONS
73	¹⁸ F-FDG PET/CT imaging in rectal cancer: relationship with the <i>RAS</i> mutational status. British Journal of Radiology, 2016, 89, 20160212.	2.2	54
74	18F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 2324-2335.	6.4	45
75	FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1453-1460.	6.4	102
76	Development of a nomogram combining clinical staging with 18F-FDG PET/CT image features in non-small-cell lung cancer stage l–III. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1477-1485.	6.4	97
77	MO-DE-207B-11: Reliability of PET/CT Radiomics Features in Functional and Morphological Components of NSCLC Lesions: A Repeatability Analysis in a Prospective Multicenter Cohort. Medical Physics, 2016, 43, 3706-3707.	3.0	2
78	SPEQTACLE: An automated generalized fuzzy Câ€means algorithm for tumor delineation in PET. Medical Physics, 2015, 42, 5720-5734.	3.0	16
79	Regarding "Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm―By DP. Onoma et al Computerized Medical Imaging and Graphics, 2015, 46, 300-301.	5.8	1
80	Early Metabolic Response to Neoadjuvant Treatment: FDG PET/CT Criteria according to Breast Cancer Subtype. Radiology, 2015, 277, 358-371.	7.3	72
81	Do clinical, histological or immunohistochemical primary tumour characteristics translate into different 18F-FDG PET/CT volumetric and heterogeneity features in stage II/III breast cancer?. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1682-1691.	6.4	63
82	A framework for multimodal imaging-based prognostic model building: Preliminary study on multimodal MRI in Glioblastoma Multiforme. Irbm, 2015, 36, 345-350.	5.6	20
83	Baseline Tumor ¹⁸ F-FDG Uptake and Modifications After 2 Cycles of Neoadjuvant Chemotherapy Are Prognostic of Outcome in ER+/HER2â° Breast Cancer. Journal of Nuclear Medicine, 2015, 56, 824-831.	5.0	48
84	Prognostic value of multimodal MRI tumor features in Glioblastoma multiforme using textural features analysis. , 2015, , .		9
85	¹⁸ F-FDG PET Uptake Characterization Through Texture Analysis: Investigating the Complementary Nature of Heterogeneity and Functional Tumor Volume in a Multi–Cancer Site Patient Cohort. Journal of Nuclear Medicine, 2015, 56, 38-44.	5.0	374
86	Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers. Strahlentherapie Und Onkologie, 2015, 191, 217-224.	2.0	36
87	TUâ€CDâ€BRBâ€10: 18Fâ€FDG PET Imageâ€Derived Tumor Features Highlight Altered Pathways Identified by Trancriptomic Analysis in Head and Neck Cancer. Medical Physics, 2015, 42, 3604-3605.	3.0	1
88	Use of FDG-PET to guide dose prescription heterogeneity in stereotactic body radiation therapy for lung cancers with volumetric modulated arc therapy: a feasibility study. Radiation Oncology, 2014, 9, 300.	2.7	2
89	Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 915-924.	6.4	31
90	Spatially Accurate Ground Truth for PET Segmentation Verification From Biopsy Specimens Extracted Under PET/CT Guidance. International Journal of Radiation Oncology Biology Physics, 2014, 90, S845.	0.8	0

#	Article	IF	CITATIONS
91	Visual Versus Quantitative Assessment of Intratumor ¹⁸ F-FDG PET Uptake Heterogeneity: Prognostic Value in Non–Small Cell Lung Cancer. Journal of Nuclear Medicine, 2014, 55, 1235-1241.	5.0	130
92	PET/MR attenuation correction: where have we come from and where are we going?. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 1172-1175.	6.4	21
93	Early assessment with 18F-fluorodeoxyglucose positron emission tomography/computed tomography can help predict the outcome of neoadjuvant chemotherapy in triple negative breast cancer. European Journal of Cancer, 2014, 50, 1864-1871.	2.8	53
94	FDG PET/CT for rectal carcinoma radiotherapy treatment planning: comparison of functional volume delineation algorithms and clinical challenges. Journal of Applied Clinical Medical Physics, 2014, 15, 216-228.	1.9	14
95	Correlation of Intra-Tumor 18F-FDG Uptake Heterogeneity Indices with Perfusion CT Derived Parameters in Colorectal Cancer. PLoS ONE, 2014, 9, e99567.	2.5	30
96	Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 1662-1671.	6.4	186
97	Estrogen receptorâ€positive/human epidermal growth factor receptor 2â€negative breast tumors. Cancer, 2013, 119, 1960-1968.	4.1	47
98	Potential of [18F]-Fluoromisonidazole positron-emission tomography for radiotherapy planning in head and neck squamous cell carcinomas. Strahlentherapie Und Onkologie, 2013, 189, 1015-1019.	2.0	18
99	Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation. Medical Image Analysis, 2013, 17, 877-891.	11.6	60
100	MRI data driven partial volume effects correction in PET imaging using 3D local multi-resolution analysis. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 702, 39-41.	1.6	2
101	Comparison Between 18F-FDG PET Image–Derived Indices for Early Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer. Journal of Nuclear Medicine, 2013, 54, 341-349.	5.0	74
102	Early prediction of pathological response in locally advanced rectal cancer based on sequential ¹⁸ F-FDG PET. Acta Oncológica, 2013, 52, 619-626.	1.8	40
103	HER2-overexpressing breast cancer: FDG uptake after two cycles of chemotherapy predicts the outcome of neoadjuvant treatment. British Journal of Cancer, 2013, 109, 1157-1164.	6.4	59
104	Investigation of realistic PET simulations incorporating tumor patientË^s specificity using anthropomorphic models: Creation of an oncology database. Medical Physics, 2013, 40, 112506.	3.0	26
105	TU-A-141-01: Multi Modal PET/CT Imaging for Therapy Response Early Prediction and Therapy Monitoring. Medical Physics, 2013, 40, 425-425.	3.0	0
106	SU-D-500-04: Impact of Delineation and Partial Volume Effects Correction On PET Uptake Heterogeneity Quantification Through Textural Features Analysis for Therapy Response in Oncology. Medical Physics, 2013, 40, 106-106.	3.0	0
107	Comparison of different methods of incorporating respiratory motion for lung cancer tumor volume delineation on PET images: a simulation study. Physics in Medicine and Biology, 2012, 57, 7409-7430.	3.0	7
108	Impact of the accuracy of automatic tumour functional volume delineation on radiotherapy treatment planning. Physics in Medicine and Biology, 2012, 57, 5381-5397.	3.0	17

#	Article	IF	CITATIONS
109	Reproducibility of Tumor Uptake Heterogeneity Characterization Through Textural Feature Analysis in ¹⁸ F-FDG PET. Journal of Nuclear Medicine, 2012, 53, 693-700.	5.0	289
110	Impact of Partial-Volume Effect Correction on the Predictive and Prognostic Value of Baseline ¹⁸ F-FDG PET Images in Esophageal Cancer. Journal of Nuclear Medicine, 2012, 53, 12-20.	5.0	58
111	Reply: Marker Selection Based on Only Reproducibility Can Be Questioned. Journal of Nuclear Medicine, 2012, 53, 1993.2-1993.	5.0	0
112	Image Change Detection Using Paradoxical Theory for Patient Follow-Up Quantitation and Therapy Assessment. IEEE Transactions on Medical Imaging, 2012, 31, 1743-1753.	8.9	4
113	Reproducibility of functional volume and activity concentration in 18F-FDG PET/CT of liver metastases in colorectal cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 1858-1867.	6.4	24
114	The age of reason for FDG PET image-derived indices. European Journal of Nuclear Medicine and Molecular Imaging, 2012, 39, 1670-1672.	6.4	36
115	Evaluation of a 3D local multiresolution algorithm for the correction of partial volume effects in positron emission tomography. Medical Physics, 2011, 38, 4920-4933.	3.0	39
116	PET functional volume delineation: a robustness and repeatability study. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 663-672.	6.4	108
117	Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1191-1202.	6.4	130
118	Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1595-1606.	6.4	71
119	Intratumor Heterogeneity Characterized by Textural Features on Baseline ¹⁸ F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer. Journal of Nuclear Medicine, 2011, 52, 369-378.	5.0	626
120	Autocontouring Versus Manual Contouring. Journal of Nuclear Medicine, 2011, 52, 658.1-658.	5.0	15
121	Impact of Tumor Size and Tracer Uptake Heterogeneity in ¹⁸ F-FDG PET and CT Non–Small Cell Lung Cancer Tumor Delineation. Journal of Nuclear Medicine, 2011, 52, 1690-1697.	5.0	126
122	WE-E-BRC-01: Impact of Tumor Size and 18F-FDG Tracer Uptake Heterogeneity in Non-Small Cell Lung Cancer Tumor Automatic Delineation on PET and CT Images for Gross Tumor Volumes Determination. Medical Physics, 2011, 38, 3818-3818.	3.0	0
123	SU-E-J-53: Multi Observation PET Image Fusion for Patient Follow-Up Quantitation in Oncology. Medical Physics, 2011, 38, 3454-3454.	3.0	0
124	Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications. International Journal of Radiation Oncology Biology Physics, 2010, 77, 301-308.	0.8	154
125	Defining Radiotherapy Target Volumes Using 18F-Fluoro-Deoxy-Glucose Positron Emission Tomography/Computed Tomography: Still a Pandora's Box?: In Regard to Devic etÂal. (Int J Radiat Oncol) Tj 	ETQqal 1 ().78⁄4314 rg8
126	Reproducibility of ¹⁸ F-FDG and 3′-Deoxy-3′- ¹⁸ F-Fluorothymidine PET Tumor Volume Measurements. Journal of Nuclear Medicine. 2010. 51. 1368-1376.	5.0	118

#	Article	IF	CITATIONS
127	A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET. IEEE Transactions on Medical Imaging, 2009, 28, 881-893.	8.9	282
128	Incorporating Patient-Specific Variability in the Simulation of Realistic Whole-Body \$^{18}{hbox{F-FDG}}\$ Distributions for Oncology Applications. Proceedings of the IEEE, 2009, 97, 2026-2038.	21.3	52
129	Une nouvelle méthode de détermination automatique des volumes fonctionnels pour les applications de l'imagerie d'émission en oncologie. Irbm, 2009, 30, 144-149.	5.6	2
130	Contrast enhancement in emission tomography by way of synergistic PET/CT image combination. Computer Methods and Programs in Biomedicine, 2008, 90, 191-201.	4.7	25
131	Conditional partial volume correction for emission tomography: A wavelet-based hidden Markov model and multi-resolution approach. , 2008, , .		2
132	Non-stationary fuzzy Markov chain. Pattern Recognition Letters, 2007, 28, 2201-2208.	4.2	30