
Susan K Wiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6672909/publications.pdf Version: 2024-02-01

SUGAN K WISED

#	Article	IF	CITATIONS
1	LOTVS: A global collection of permanent vegetation plots. Journal of Vegetation Science, 2022, 33, .	2.2	4
2	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	86
3	Ecological importance of the Myrtaceae in New Zealand's natural forests. Journal of Vegetation Science, 2022, 33, .	2.2	4
4	A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base. Global Ecology and Biogeography, 2022, 31, 1242-1260.	5.8	29
5	Climate influences the value of a plant structural defence against browsing. Journal of Ecology, 2021, 109, 1411-1423.	4.0	5
6	Using spatial models to identify refugia and guide restoration in response to an invasive plant pathogen. Journal of Applied Ecology, 2021, 58, 192-201.	4.0	7
7	Global functional variation in alpine vegetation. Journal of Vegetation Science, 2021, 32, e13000.	2.2	17
8	Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography, 2021, 30, 1218-1231.	5.8	59
9	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	5.8	49
10	The adaptive challenge of extreme conditions shapes evolutionary diversity of plant assemblages at continental scales. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
11	Method for national mapping spatial extent of southern beech forest using temporal spectral signatures. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102408.	2.8	3
12	Resource competition, not facilitation, structures gravel beach plant communities. Journal of Vegetation Science, 2021, 32, e13099.	2.2	0
13	Tree survival and growth responses in the aftermath of a strong earthquake. Journal of Ecology, 2020, 108, 107-121.	4.0	9
14	Presence-only and Presence-absence Data for Comparing Species Distribution Modeling Methods. Biodiversity Informatics, 2020, 15, 69-80.	3.0	38
15	Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24345-24351.	7.1	113
16	Macroclimate and Topography Interact to Influence the Abundance of Divaricate Plants in New Zealand. Frontiers in Plant Science, 2020, 11, 507.	3.6	6
17	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	5.8	62
18	Convolutional Neural Networks accurately predict cover fractions of plant species and communities in Unmanned Aerial Vehicle imagery. Remote Sensing in Ecology and Conservation, 2020, 6, 472-486.	4.3	82

#	Article	IF	CITATIONS
19	Integrating permanent plot and palaeoecological data to determine subalpineÂpostâ€fire succession, recovery and convergence over 128 years. Journal of Vegetation Science, 2020, 31, 755-767.	2.2	1
20	Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR. Remote Sensing, 2019, 11, 1911.	4.0	8
21	sPlot – A new tool for global vegetation analyses. Journal of Vegetation Science, 2019, 30, 161-186.	2.2	185
22	The relationship of woody plant size and leaf nutrient content to largeâ€scale productivity for forests across the Americas. Journal of Ecology, 2019, 107, 2278-2290.	4.0	18
23	The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 2019, 5, eaaz0414.	10.3	194
24	Trajectory analysis in community ecology. Ecological Monographs, 2019, 89, e01350.	5.4	74
25	Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1837-1842.	7.1	144
26	Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. Journal of Biogeography, 2018, 45, 895-916.	3.0	92
27	Using classification assignment rules to assess land-use change impacts on forest biodiversity at local-to-national scales. Forest Ecosystems, 2018, 5, .	3.1	2
28	A classification of the geothermal vegetation of the TaupŕVolcanic Zone, New Zealand. Journal of the Royal Society of New Zealand, 2018, 48, 21-38.	1.9	7
29	The <scp>bien r</scp> package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology and Evolution, 2018, 9, 373-379.	5.2	241
30	LiDAR-Based Regional Inventory of Tall Trees—Wellington, New Zealand. Forests, 2018, 9, 702.	2.1	16
31	Segregation, nestedness and homogenisation in plant communities dominated by native and alien species. Plant Ecology and Diversity, 2018, 11, 479-488.	2.4	5
32	New Zealand's plot-based classification of vegetation. Phytocoenologia, 2018, 48, 153-161.	0.5	11
33	Plant Functional Diversity and the Biogeography of Biomes in North and South America. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	38
34	Achievements and challenges in the integration, reuse and synthesis of vegetation plot data. Journal of Vegetation Science, 2016, 27, 868-879.	2.2	24
35	Patterns and drivers of plant functional group dominance across the Western Hemisphere: a macroecological re-assessment based on a massive botanical dataset. Botanical Journal of the Linnean Society, 2016, 180, 141-160.	1.6	59
36	<i>Plantâ€Oâ€Matic</i> : a dynamic and mobile guide to all plants of the Americas. Methods in Ecology and Evolution, 2016, 7, 960-965.	5.2	18

#	Article	IF	CITATIONS
37	Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354, .	12.6	864
38	Expanding an existing classification of New Zealand vegetation to include non-forested vegetation. , 2016, 40, 160-178.		11
39	A comparative framework for broadâ€scale plotâ€based vegetation classification. Applied Vegetation Science, 2015, 18, 543-560.	1.9	126
40	Mapping tree density at a global scale. Nature, 2015, 525, 201-205.	27.8	642
41	Shifts in trait means and variances in North American tree assemblages: species richness patterns are loosely related to the functional space. Ecography, 2015, 38, 649-658.	4.5	89
42	Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13745-13750.	7.1	319
43	Rate of tree carbon accumulation increases continuously with tree size. Nature, 2014, 507, 90-93.	27.8	663
44	Quantifying invasion resistance: the use of recruitment functions to control for propagule pressure. Ecology, 2014, 95, 920-929.	3.2	25
45	Updating vegetation classifications: an example with <scp>N</scp> ew <scp>Z</scp> ealand's woody vegetation. Journal of Vegetation Science, 2013, 24, 80-93.	2.2	50
46	Dispersal limitation, speciation, environmental filtering and niche differentiation influence forest tree communities in West Polynesia. Journal of Biogeography, 2013, 40, 988-999.	3.0	24
47	Habitat area and climate stability determine geographical variation in plant species range sizes. Ecology Letters, 2013, 16, 1446-1454.	6.4	130
48	Functional Traits Reveal Processes Driving Natural Afforestation at Large Spatial Scales. PLoS ONE, 2013, 8, e75219.	2.5	8
49	Status Assessment of New Zealand's Naturally Uncommon Ecosystems. Conservation Biology, 2012, 26, 619-629.	4.7	32
50	Impacts of culling and exclusion of browsers on vegetation recovery across New Zealand forests. Biological Conservation, 2012, 153, 64-71.	4.1	46
51	Quantification of the effects of aboveground and belowground competition on growth of seedlings in a conifer–angiosperm forest. Forest Ecology and Management, 2012, 269, 188-196.	3.2	17
52	Determinants of tree mortality in mixed old-growth Nothofagus forest. Forest Ecology and Management, 2012, 270, 189-199.	3.2	20
53	Using species combinations in indicator value analyses. Methods in Ecology and Evolution, 2012, 3, 973-982.	5.2	224
54	Towards consistency in vegetation classification. Journal of Vegetation Science, 2012, 23, 387-393.	2.2	74

#	Article	IF	CITATIONS
55	Rare species drive local trait diversity in two geographically disjunct examples of a naturally rare alpine ecosystem in <scp>N</scp> ew <scp>Z</scp> ealand. Journal of Vegetation Science, 2012, 23, 626-639.	2.2	17
56	New Zealand National Vegetation Databank. Biodiversity and Ecology = Biodiversitat Und Okologie, 2012, 4, 318-318.	0.3	0
57	New Zealand's forest and shrubland communities: a quantitative classification based on a nationally representative plot network. Applied Vegetation Science, 2011, 14, 506-523.	1.9	62
58	Vegâ€X – an exchange standard for plotâ€based vegetation data. Journal of Vegetation Science, 2011, 22, 598-609.	2.2	33
59	Disturbance affects short-term facilitation, but not long-term saturation, of exotic plant invasion in New Zealand forest. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1457-1466.	2.6	16
60	Climate, landscape and microenvironment interact to determine plant composition in naturally discrete gravel beach communities. Journal of Vegetation Science, 2010, 21, 657.	2.2	6
61	Interspecific relationships among growth, mortality and xylem traits of woody species from New Zealand. Functional Ecology, 2010, 24, 253-262.	3.6	99
62	Environment, composition and conservation of coastal turfs of mainland New Zealand. New Zealand Journal of Botany, 2010, 48, 1-14.	1.1	12
63	Disperser communities and legacies of goat grazing determine forest succession on the remote Three Kings Islands, New Zealand. Biological Conservation, 2010, 143, 926-938.	4.1	19
64	Deadwood in New Zealand's indigenous forests. Forest Ecology and Management, 2009, 258, 2456-2466.	3.2	28
65	Ectomycorrhizal fungal communities and soil chemistry in harvested and unharvested temperate Nothofagus rainforests. Canadian Journal of Forest Research, 2009, 39, 1069-1079.	1.7	51
66	(Russo <i>etÂal.</i> 2007): A reâ€analysis of growth–size scaling relationships of woody plant species. Ecology Letters, 2008, 11, 311-312.	6.4	4
67	CONTEXT MATTERS: MATRIX VEGETATION INFLUENCES NATIVE AND EXOTIC SPECIES COMPOSITION ON HABITAT ISLANDS. Ecology, 2008, 89, 380-391.	3.2	27
68	ABOVEGROUND AND BELOWGROUND EFFECTS OF SINGLE-TREE REMOVALS IN NEW ZEALAND RAIN FOREST. Ecology, 2008, 89, 1232-1245.	3.2	30
69	Where do conifers regenerate after selective harvest?. Forest Ecology and Management, 2007, 253, 138-147.	3.2	24
70	Growth–size scaling relationships of woody plant species differ from predictions of the Metabolic Ecology Model. Ecology Letters, 2007, 10, 889-901.	6.4	58
71	Environment, disturbance history and rain forest composition across the islands of Tonga, Western Polynesia. Journal of Vegetation Science, 2006, 17, 233-244.	2.2	38
72	ORIGINAL ARTICLE: Elevational parallels of latitudinal variation in the proportion of lianas in woody floras. Journal of Biogeography, 2006, 34, 163-168.	3.0	46

#	Article	IF	CITATIONS
73	Tree growth and mortality after small-group harvesting in New Zealand old-growth Nothofagus forests. Canadian Journal of Forest Research, 2005, 35, 2323-2331.	1.7	20
74	Determinants of regional and local patterns in the floras of braided riverbeds in New Zealand. Journal of Biogeography, 2004, 31, 1355-1372.	3.0	28
75	Reconstructing Holocene water tables in New Zealand using testate amoebae: differential preservation of tests and implications for the use of transfer functions. Holocene, 2003, 13, 61-72.	1.7	67
76	The potential for long-term persistence of forest fragments on Tongatapu, a large island in western Polynesia. Journal of Biogeography, 2002, 29, 767-787.	3.0	35
77	Strategies to estimate national forest carbon stocks from inventory data: the 1990 New Zealand baseline. Global Change Biology, 2001, 7, 389-403.	9.5	48
78	Lateglacial and Holocene vegetation and climatic change on Auckland Island, Subantarctic New Zealand. Holocene, 2000, 10, 719-728.	1.7	32
79	High-Elevation Outcrops and Barrens of the Southern Appalachian Mountains. , 1999, , 119-132.		24
80	IMMEDIATE DAMAGE BY AN EARTHQUAKE TO A TEMPERATE MONTANE FOREST. Ecology, 1999, 80, 708-714.	3.2	84
81	Comparison of Southern Appalachian high-elevation outcrop plant communities with their Northern Appalachian counterparts. Journal of Biogeography, 1998, 25, 501-513.	3.0	18
82	COMMUNITY STRUCTURE AND FOREST INVASION BY AN EXOTIC HERB OVER 23 YEARS. Ecology, 1998, 79, 2071-2081.	3.2	184
83	PREDICTION OF RARE-PLANT OCCURRENCE: A SOUTHERN APPALACHIAN EXAMPLE. , 1998, 8, 909-920.		93
84	Mountain beech forest succession after a fire at Mount Thomas Forest, Canterbury, New Zealand. New Zealand Journal of Botany, 1997, 35, 505-515.	1.1	58
85	High-elevation rock outcrop vegetation of the Southern Appalachian Mountains. Journal of Vegetation Science, 1996, 7, 703-722.	2.2	110