
Paul R Lephart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6672634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting Direct-Specimen SARS-CoV-2 Assay Performance Using Residual Patient Samples. journal of applied laboratory medicine, The, 2022, 7, 661-673.	1.3	3
2	Comparative study of four SARS-CoV-2 Nucleic Acid Amplification Test (NAAT) platforms demonstrates that ID NOW performance is impaired substantially by patient and specimen type. Diagnostic Microbiology and Infectious Disease, 2021, 99, 115200.	1.8	41
3	Severe Acute Respiratory Syndrome Coronavirus 2 Surveillance in Decedents in a Large, Urban Medical Examiner's Office. Clinical Infectious Diseases, 2021, 72, e580-e585.	5.8	4
4	Donor to recipient transmission of SARS-CoV-2 by lung transplantation despite negative donor upper respiratory tract testing. American Journal of Transplantation, 2021, 21, 2885-2889.	4.7	110
5	Epidemiologic Associations Vary Between Tetracycline and Fluoroquinolone Resistant Campylobacter jejuni Infections. Frontiers in Public Health, 2021, 9, 672473.	2.7	7
6	Behind Every Great Infection Prevention Program is a Great Microbiology Laboratory. Infectious Disease Clinics of North America, 2021, 35, 789-802.	5.1	0
7	Comparing gut resistome composition among patients with acute Campylobacter infections and healthy family members. Scientific Reports, 2021, 11, 22368.	3.3	2
8	Minimizing Time to Optimal Antimicrobial Therapy for Enterobacteriaceae Bloodstream Infections: A Retrospective, Hypothetical Application of Predictive Scoring Tools vs Rapid Diagnostics Tests. Open Forum Infectious Diseases, 2020, 7, ofaa278.	0.9	8
9	A Multicenter Study of the Revogene C. difficile System for Detection of the Toxin B Gene from Unformed Stool Specimens. Journal of Clinical Microbiology, 2020, 58, .	3.9	2
10	The hypothetical impact of Accelerate Phenoâ,,¢ system on time to effective therapy and time to definitive therapy in an institution with an established antimicrobial stewardship programme currently utilizing rapid genotypic organism/resistance marker identification. Journal of Antimicrobial Chemotherapy, 2019, 74, i32-i39.	3.0	12
11	Increasing Frequencies of Antibiotic Resistant Non-typhoidal Salmonella Infections in Michigan and Risk Factors for Disease. Frontiers in Medicine, 2019, 6, 250.	2.6	16
12	The Hypothetical Impact of Accelerate Pheno on Time to Effective Therapy and Time to Definitive Therapy for Bloodstream Infections Due to Drug-Resistant Gram-Negative Bacilli. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	8
13	An Antibiotic Stewardship Program Blueprint for Optimizing Verigene BC-GN within an Institution: a Tale of Two Cities. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	34
14	The Verigene dilemma: gram-negative polymicrobial bloodstream infections and clinical decision making. Diagnostic Microbiology and Infectious Disease, 2018, 91, 144-146.	1.8	26
15	Impact of Early Multiplex FilmArray Respiratory Pathogen Panel (RPP) Assay on Hospital Length of Stay in Pediatric Patients Younger Than 3 Months Admitted for Fever or Sepsis Workup. Clinical Pediatrics, 2018, 57, 1224-1226.	0.8	5
16	2075. The Hypothetical Impact of Accelerate Pheno on Time to Appropriate Therapy (TTAT) and Time to Optimal Therapy (TTOT) in an Institution with an Established Antimicrobial Stewardship Program and Rapid Genotypic Organism/Resistance Marker Identification. Open Forum Infectious Diseases, 2018, 5, S606-S606.	0.9	0
17	2415. Comparison of Minocycline MIC's Obtained by Etest to Those Obtained by Broth Microdilution in a Bank of Isolates of Acinetobacter baumannii Collected in Southeastern Michigan. Open Forum Infectious Diseases, 2018, 5, S722-S722.	0.9	0
18	Therapeutic Management of Pseudomonas aeruginosa Bloodstream Infection Non-Susceptible to Carbapenems but Susceptible to "Old―Cephalosporins and/or to Penicillins. Microorganisms, 2018, 6, o	3.6	9

PAUL R LEPHART

#	Article	IF	CITATIONS
19	Invasive Pneumococcal Disease in Patients With Sickle Cell Disease. Journal of Pediatric Hematology/Oncology, 2017, 39, 341-344.	0.6	14
20	Prevalence of Clostridium difficile infection in acute care hospitals, long-term care facilities, and outpatient clinics: Is Clostridium difficile infection underdiagnosed in long-term care facility patients?. American Journal of Infection Control, 2017, 45, 1157-1159.	2.3	5
21	Antimicrobial Susceptibility Profiles of Human Campylobacter jejuni Isolates and Association with Phylogenetic Lineages. Frontiers in Microbiology, 2016, 7, 589.	3.5	48
22	Predictors of Clostridium difficile infection–related mortality among older adults. American Journal of Infection Control, 2016, 44, 1219-1223.	2.3	7
23	Multicenter Evaluation of BioFire FilmArray Meningitis/Encephalitis Panel for Detection of Bacteria, Viruses, and Yeast in Cerebrospinal Fluid Specimens. Journal of Clinical Microbiology, 2016, 54, 2251-2261.	3.9	449
24	Risk Factors and Outcomes for Carbapenem-Resistant Klebsiella pneumoniae Isolation, Stratified by Its Multilocus Sequence Typing: ST258 Versus Non-ST258. Open Forum Infectious Diseases, 2016, 3, ofv213.	0.9	13
25	Evaluation of the FilmArray Blood Culture Identification Panel: Results of a Multicenter Controlled Trial. Journal of Clinical Microbiology, 2016, 54, 687-698.	3.9	192
26	Clostridium Difficile Colonization in Hematopoietic Stem CellÂTransplant Recipients: A Prospective Study of the Epidemiology and Outcomes Involving Toxigenic and Nontoxigenic Strains. Biology of Blood and Marrow Transplantation, 2016, 22, 157-163.	2.0	59
27	Impact of Contact Isolation Precautions on Multi-Drug Resistant <i>Acinetobacter baumannii</i> in the Pediatric Intensive Care Unit. Infection Control and Hospital Epidemiology, 2015, 36, 1108-1110.	1.8	6
28	The Complex Epidemiology of Carbapenem-ResistantEnterobacterInfections: A Multicenter Descriptive Analysis. Infection Control and Hospital Epidemiology, 2015, 36, 1283-1291.	1.8	17
29	Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome, 2015, 3, 45.	11.1	151
30	Group B Streptococcus Sepsis in Twins. Pediatric Infectious Disease Journal, 2015, 34, 548-549.	2.0	4
31	Multicenter Evaluation of Candida QuickFISH BC for Identification of Candida Species Directly from Blood Culture Bottles. Journal of Clinical Microbiology, 2015, 53, 1672-1676.	3.9	17
32	Risk Factors for Colonization due to Carbapenem-Resistant Enterobacteriaceae among Patients: Exposed to Long-Term Acute Care and Acute Care Facilities. Infection Control and Hospital Epidemiology, 2014, 35, 398-405.	1.8	80
33	Weissella confusa: problems with identification of an opportunistic pathogen that has been found in fermented foods and proposed as a probiotic. Frontiers in Microbiology, 2014, 5, 254.	3.5	45
34	Surgical Site Infections in Genital Reconstruction Surgery for Gender Reassignment, Detroit: 1984–2008. Surgical Infections, 2014, 15, 99-104.	1.4	9
35	Major Variation in MICs of Tigecycline in Gram-Negative Bacilli as a Function of Testing Method. Journal of Clinical Microbiology, 2014, 52, 1617-1621.	3.9	63
36	Outcomes of carbapenem-resistant Enterobacteriaceae isolation: Matched analysis. American Journal of Infection Control, 2014, 42, 612-620.	2.3	43

PAUL R LEPHART

#	Article	IF	CITATIONS
37	Predictors and outcomes of acyclovirâ€resistant herpes simplex virus infection among hematopoietic cell transplant recipients: case–case–control investigation. Clinical Transplantation, 2014, 28, 1-5.	1.6	7
38	Carbapenem-Resistance in Gram-Negative Bacilli and Intravenous Minocycline: An Antimicrobial Stewardship Approach at the Detroit Medical Center. Clinical Infectious Diseases, 2014, 59, S388-S393.	5.8	46
39	Impact of Different Antimicrobial Therapies on Clinical and Fiscal Outcomes of Patients with Bacteremia Due to Vancomycin-Resistant Enterococci. Antimicrobial Agents and Chemotherapy, 2014, 58, 3968-3975.	3.2	27
40	Early Use of Daptomycin Versus Vancomycin for Methicillin-Resistant Staphylococcus aureus Bacteremia With Vancomycin Minimum Inhibitory Concentration >1 mg/L: A Matched Cohort Study. Clinical Infectious Diseases, 2013, 56, 1562-1569.	5.8	163
41	The carbapenem-resistant Enterobacteriaceae score: A bedside score to rule out infection with carbapenem-resistant Enterobacteriaceae among hospitalized patients. American Journal of Infection Control, 2013, 41, 180-182.	2.3	28
42	Detection of respiratory coinfections in pediatric patients using a small volume polymerase chain reaction array respiratory panel: More evidence for combined droplet and contact isolation. American Journal of Infection Control, 2013, 41, 868-873.	2.3	8
43	Epidemiology of Vancomycin-Resistant Enterococcus faecalis: a Case-Case-Control Study. Antimicrobial Agents and Chemotherapy, 2013, 57, 49-55.	3.2	33
44	Epidemiology of Bloodstream Infections Caused by Acinetobacter baumannii and Impact of Drug Resistance to both Carbapenems and Ampicillin-Sulbactam on Clinical Outcomes. Antimicrobial Agents and Chemotherapy, 2013, 57, 6270-6275.	3.2	60
45	Epidemiology and Risk Factors for Isolation of Escherichia coli Producing CTX-M-Type Extended-Spectrum β-Lactamase in a Large U.S. Medical Center. Antimicrobial Agents and Chemotherapy, 2013, 57, 4010-4018.	3.2	62
46	Epidemiology of severe influenza outcomes among adult patients with obesity in Detroit, Michigan, 2011. Influenza and Other Respiratory Viruses, 2013, 7, 1004-1007.	3.4	27
47	Fosfomycin activity versus carbapenem-resistant Enterobacteriaceae and vancomycin-resistant Enterococcus, Detroit, 2008–10. Journal of Antibiotics, 2013, 66, 625-627.	2.0	25
48	Hyphal and Yeast Forms of Histoplasma capsulatum Growing within 5 Days in an Automated Bacterial Blood Culture System. Journal of Clinical Microbiology, 2012, 50, 2833-2834.	3.9	5
49	Efficacy of Ertapenem for Treatment of Bloodstream Infections Caused by Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 2012, 56, 2173-2177.	3.2	53
50	A Knee Ulcer in a Teenager with Acute Myeloid Leukemia. Pediatric Infectious Disease Journal, 2012, 31, 1100.	2.0	3
51	Treatment of Methicillin-Resistant Staphylococcus aureus Infections with a Minimal Inhibitory Concentration of 2 l¼g/mL to Vancomycin: Old (Trimethoprim/Sulfamethoxazole) versus New (Daptomycin or Linezolid) Agents. Annals of Pharmacotherapy, 2012, 46, 1587-1597.	1.9	37
52	Group B Streptococcus infections in non-pregnant adults: the role of immunosuppression. International Journal of Infectious Diseases, 2012, 16, e182-e186.	3.3	28
53	Growing prevalence of Providencia stuartii associated with the increased usage of colistin at a tertiary health care center. International Journal of Infectious Diseases, 2012, 16, e646-e648.	3.3	37
54	Recent Exposure to Antimicrobials and Carbapenem-Resistant Enterobacteriaceae: The Role of Antimicrobial Stewardship. Infection Control and Hospital Epidemiology, 2012, 33, 817-830.	1.8	109

PAUL R LEPHART

#	Article	IF	CITATIONS
55	Comparison of the Clinical Characteristics and Outcomes Associated with Vancomycin-Resistant Enterococcus faecalis and Vancomycin-Resistant E. faecium Bacteremia. Antimicrobial Agents and Chemotherapy, 2012, 56, 2452-2458.	3.2	44
56	Epidemiology of Vancomycin-Resistant Enterococci with Reduced Susceptibility to Daptomycin. Infection Control and Hospital Epidemiology, 2012, 33, 1250-1254.	1.8	24
57	Hospital bath basins are frequently contaminated with multidrug-resistant human pathogens. American Journal of Infection Control, 2012, 40, 562-564.	2.3	35
58	The burden of multidrug-resistant organisms on tertiary hospitals posed by patients with recent stays in long-term acute care facilities. American Journal of Infection Control, 2012, 40, 760-765.	2.3	49
59	"Swimming in resistance†Co-colonization with carbapenem-resistant Enterobacteriaceae and Acinetobacter baumannii or Pseudomonas aeruginosa. American Journal of Infection Control, 2012, 40, 830-835.	2.3	60
60	Retrospective evaluation of colistin versus tigecycline for the treatment of Acinetobacter baumannii and/or carbapenem-resistant Enterobacteriaceae infections. American Journal of Infection Control, 2012, 40, 983-987.	2.3	59
61	Predictors and outcomes of linezolid-resistant vancomycin-resistant Enterococcus: A case-case-control study. American Journal of Infection Control, 2012, 40, e261-e263.	2.3	15
62	Extended-Spectrum β-Lactamase Producers Reported as Susceptible to Piperacillin-Tazobactam, Cefepime, and Cefuroxime in the Era of Lowered Breakpoints and No Confirmatory Tests. Infection Control and Hospital Epidemiology, 2012, 33, 853-855.	1.8	22
63	Aerosolized Vaccine as an Unexpected Source of False-Positive Bordetella pertussis PCR Results. Journal of Clinical Microbiology, 2012, 50, 472-474.	3.9	12
64	A Practical Method for Surveillance of Novel H1N1 Influenza Using Automated Hospital Data. Infection Control and Hospital Epidemiology, 2011, 32, 700-702.	1.8	3
65	Outcomes and Genetic Relatedness of Carbapenem-Resistant <i>Enterobacteriaceae</i> at Detroit Medical Center. Infection Control and Hospital Epidemiology, 2011, 32, 861-871.	1.8	65
66	Growing Prevalence of Vancomycin-ResistantEnterococcus faecalisin the Region with the Highest Prevalence of Vancomycin-ResistantStaphylococcus aureus. Infection Control and Hospital Epidemiology, 2011, 32, 922-924.	1.8	23
67	Detection of 2 SME-1 carbapenemase-producing Serratia marcescens in Detroit. Diagnostic Microbiology and Infectious Disease, 2011, 71, 325-326.	1.8	10
68	Incidence of and Risk Factors for Colistin-Associated Nephrotoxicity in a Large Academic Health System. Clinical Infectious Diseases, 2011, 53, 879-884.	5.8	277
69	Outbreak of Colistin-Resistant, Carbapenem-Resistant <i>Klebsiella pneumoniae</i> in Metropolitan Detroit, Michigan. Antimicrobial Agents and Chemotherapy, 2011, 55, 593-599.	3.2	184
70	Self-Regulation of Candida albicans Population Size during GI Colonization. PLoS Pathogens, 2007, 3, e184.	4.7	153
71	Effect of the Major Repeat Sequence on Mitotic Recombination in Candida albicans. Genetics, 2006, 174, 1737-1744.	2.9	35
72	Effect of the Major Repeat Sequence on Chromosome Loss in Candida albicans. Eukaryotic Cell, 2005, 4, 733-741.	3.4	40

#	Article	IF	CITATIONS
73	Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formationâ€. Molecular Microbiology, 2004, 52, 1451-1462.	2.5	104
74	Reservoir ofCandidaalbicansinfection in a vascular bypass graft demonstrates a stable karyotype over six months. Medical Mycology, 2004, 42, 255-260.	0.7	6