
## David C Klonoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/667215/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States.<br>Journal of Diabetes Science and Technology, 2020, 14, 813-821.                                                                 | 2.2  | 535       |
| 2  | Continuous glucose monitoring: A review of the technology and clinical use. Diabetes Research and Clinical Practice, 2017, 133, 178-192.                                                                                                 | 2.8  | 192       |
| 3  | Diabetes Technology Update: Use of Insulin Pumps and Continuous Glucose Monitoring in the<br>Hospital. Diabetes Care, 2018, 41, 1579-1589.                                                                                               | 8.6  | 175       |
| 4  | The Surveillance Error Grid. Journal of Diabetes Science and Technology, 2014, 8, 658-672.                                                                                                                                               | 2.2  | 125       |
| 5  | Continuous glucose monitoring systems - Current status and future perspectives of the flagship technologies in biosensor research Biosensors and Bioelectronics, 2021, 181, 113054.                                                      | 10.1 | 114       |
| 6  | Investigation of the Accuracy of 18 Marketed Blood Glucose Monitors. Diabetes Care, 2018, 41, 1681-1688.                                                                                                                                 | 8.6  | 112       |
| 7  | Recommendations for Standardizing Glucose Reporting and Analysis to Optimize Clinical Decision<br>Making in Diabetes: The Ambulatory Glucose Profile. Journal of Diabetes Science and Technology, 2013,<br>7, 562-578.                   | 2.2  | 104       |
| 8  | Consensus Statement on Inpatient Use of Continuous Glucose Monitoring. Journal of Diabetes<br>Science and Technology, 2017, 11, 1036-1044.                                                                                               | 2.2  | 99        |
| 9  | Overview of Fluorescence Clucose Sensing: A Technology with a Bright Future. Journal of Diabetes<br>Science and Technology, 2012, 6, 1242-1250.                                                                                          | 2.2  | 91        |
| 10 | Implementation of Continuous Glucose Monitoring in the Hospital: Emergent Considerations for<br>Remote Glucose Monitoring During the COVID-19 Pandemic. Journal of Diabetes Science and<br>Technology, 2020, 14, 822-832.                | 2.2  | 86        |
| 11 | Letter to the Editor: COVID-19 in patients with diabetes: Risk factors that increase morbidity.<br>Metabolism: Clinical and Experimental, 2020, 108, 154224.                                                                             | 3.4  | 83        |
| 12 | Technical Aspects of the Parkes Error Grid. Journal of Diabetes Science and Technology, 2013, 7, 1275-1281.                                                                                                                              | 2.2  | 81        |
| 13 | Continuous Glucose Monitors and Automated Insulin Dosing Systems in the Hospital Consensus<br>Guideline. Journal of Diabetes Science and Technology, 2020, 14, 1035-1064.                                                                | 2.2  | 77        |
| 14 | Biological and epidemiological trends in the prevalence and mortality due to outbreaks of novel coronavirus COVID-19. Journal of King Saud University - Science, 2020, 32, 2495-2499.                                                    | 3.5  | 77        |
| 15 | Fog Computing and Edge Computing Architectures for Processing Data From Diabetes Devices<br>Connected to the Medical Internet of Things. Journal of Diabetes Science and Technology, 2017, 11,<br>647-652.                               | 2.2  | 71        |
| 16 | A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring<br>Validated by Clinician Ratings. Journal of Diabetes Science and Technology, 2023, 17, 1226-1242.                                      | 2.2  | 69        |
| 17 | Association Between Achieving Inpatient Glycemic Control and Clinical Outcomes in Hospitalized<br>Patients With COVID-19: A Multicenter, Retrospective Hospital-Based Analysis. Diabetes Care, 2021, 44,<br>578-585.                     | 8.6  | 65        |
| 18 | Effect of environmental pollutants PM-2.5, carbon monoxide, and ozone on the incidence and<br>mortality of SARS-COV-2 infection in ten wildfire affected counties in California. Science of the Total<br>Environment, 2021, 757, 143948. | 8.0  | 64        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Impact of lockdown on COVID-19 prevalence and mortality during 2020 pandemic: observational analysis of 27 countries. European Journal of Medical Research, 2020, 25, 56.                                                                    | 2.2 | 63        |
| 20 | Wearable physiological systems and technologies for metabolic monitoring. Journal of Applied Physiology, 2018, 124, 548-556.                                                                                                                 | 2.5 | 60        |
| 21 | A randomized, multicentre trial evaluating the efficacy and safety of fastâ€acting insulin aspart in continuous subcutaneous insulin infusion in adults with type 1 diabetes (onset 5). Diabetes, Obesity and Metabolism, 2019, 21, 961-967. | 4.4 | 59        |
| 22 | Risk of hypoglycaemia with insulin degludec versus insulin glargine U300 in insulin-treated patients<br>with type 2 diabetes: the randomised, head-to-head CONCLUDE trial. Diabetologia, 2020, 63, 698-710.                                  | 6.3 | 58        |
| 23 | Cybersecurity for Connected Diabetes Devices. Journal of Diabetes Science and Technology, 2015, 9, 1143-1147.                                                                                                                                | 2.2 | 55        |
| 24 | Assisted Monitoring of Blood Glucose: Special Safety Needs for a New Paradigm in Testing Glucose.<br>Journal of Diabetes Science and Technology, 2010, 4, 1027-1031.                                                                         | 2.2 | 53        |
| 25 | Smart Pens Will Improve Insulin Therapy. Journal of Diabetes Science and Technology, 2018, 12, 551-553.                                                                                                                                      | 2.2 | 53        |
| 26 | ENDOCRINOLOGY IN THE TIME OF COVID-19: Remodelling diabetes services and emerging innovation. European Journal of Endocrinology, 2020, 183, G67-G77.                                                                                         | 3.7 | 48        |
| 27 | The Expanding Role of Real-World Evidence Trials in Health Care Decision Making. Journal of Diabetes<br>Science and Technology, 2020, 14, 174-179.                                                                                           | 2.2 | 44        |
| 28 | Behavioral Theory: The Missing Ingredient for Digital Health Tools to Change Behavior and Increase<br>Adherence. Journal of Diabetes Science and Technology, 2019, 13, 276-281.                                                              | 2.2 | 42        |
| 29 | A Simplified Approach Using Rate of Change Arrows to Adjust Insulin With Real-Time Continuous<br>Glucose Monitoring. Journal of Diabetes Science and Technology, 2017, 11, 1063-1069.                                                        | 2.2 | 34        |
| 30 | Hemoglobinopathies and Hemoglobin A1c in Diabetes Mellitus. Journal of Diabetes Science and Technology, 2020, 14, 3-7.                                                                                                                       | 2.2 | 34        |
| 31 | Standardization process of continuous glucose monitoring: Traceability and performance. Clinica Chimica Acta, 2021, 515, 5-12.                                                                                                               | 1.1 | 34        |
| 32 | Overcoming Barriers to Adoption of Digital Health Tools for Diabetes. Journal of Diabetes Science and Technology, 2018, 12, 3-6.                                                                                                             | 2.2 | 32        |
| 33 | Open Source Closed-Loop Insulin Delivery Systems: A Clash of Cultures or Merging of Diverse Approaches?. Journal of Diabetes Science and Technology, 2018, 12, 1223-1226.                                                                    | 2.2 | 32        |
| 34 | A Review of Continuous Glucose Monitoring-Based Composite Metrics for Glycemic Control. Diabetes<br>Technology and Therapeutics, 2020, 22, 613-622.                                                                                          | 4.4 | 30        |
| 35 | Continuous Glucose Monitoring in the Hospital. Endocrinology and Metabolism, 2021, 36, 240-255.                                                                                                                                              | 3.0 | 30        |
| 36 | Products for Monitoring Glucose Levels in the Human Body With Noninvasive Optical, Noninvasive<br>Fluid Sampling, or Minimally Invasive Technologies. Journal of Diabetes Science and Technology, 2022,<br>16, 168-214.                      | 2.2 | 30        |

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Real-World Evidence Should Be Used in Regulatory Decisions About New Pharmaceutical and Medical<br>Device Products for Diabetes. Journal of Diabetes Science and Technology, 2019, 13, 995-1000.                                                         | 2.2 | 28        |
| 38 | A Review of Blood Glucose Monitor Accuracy. Diabetes Technology and Therapeutics, 2018, 20, 843-856.                                                                                                                                                     | 4.4 | 26        |
| 39 | Implementation of Basal–Bolus Therapy in Type 2 Diabetes: A Randomized Controlled Trial Comparing<br>Bolus Insulin Delivery Using an Insulin Patch with an Insulin Pen. Diabetes Technology and<br>Therapeutics, 2019, 21, 273-285.                      | 4.4 | 26        |
| 40 | Telemedicine for Diabetes. Journal of Diabetes Science and Technology, 2016, 10, 3-5.                                                                                                                                                                    | 2.2 | 25        |
| 41 | Insulin Pump Occlusions: For Patients Who Have Been Around the (Infusion) Block. Journal of<br>Diabetes Science and Technology, 2017, 11, 451-454.                                                                                                       | 2.2 | 23        |
| 42 | Digital Health Interventions for Diabetes: Everything to Gain and Nothing to Lose. Diabetes Spectrum, 2019, 32, 226-230.                                                                                                                                 | 1.0 | 23        |
| 43 | PRIDE Statement on the Need for a Moratorium on the CMS Plan to Cite Hospitals for Performing<br>Point-of-Care Capillary Blood Glucose Monitoring on Critically Ill Patients. Journal of Clinical<br>Endocrinology and Metabolism, 2015, 100, 3607-3612. | 3.6 | 21        |
| 44 | Consensus Statement on Use of Continuous Subcutaneous Insulin Infusion Therapy in the Hospital.<br>Journal of Diabetes Science and Technology, 2018, 12, 880-889.                                                                                        | 2.2 | 21        |
| 45 | Digital Diabetes Data and Artificial Intelligence: A Time for Humility Not Hubris. Journal of Diabetes<br>Science and Technology, 2019, 13, 123-127.                                                                                                     | 2.2 | 20        |
| 46 | Continuous Ketone Monitoring Consensus Report 2021. Journal of Diabetes Science and Technology, 2022, 16, 689-715.                                                                                                                                       | 2.2 | 18        |
| 47 | The Need for Data Standards and Implementation Policies to Integrate CGM Data into the Electronic<br>Health Record. Journal of Diabetes Science and Technology, 2023, 17, 495-502.                                                                       | 2.2 | 18        |
| 48 | Continuous Ketone Monitoring: A New Paradigm for Physiologic Monitoring. Journal of Diabetes<br>Science and Technology, 2021, 15, 193229682110098.                                                                                                       | 2.2 | 17        |
| 49 | Divergent Hypoglycemic Effects of Hepatic-Directed Prandial Insulin: A 6-Month Phase 2b Study in Type 1<br>Diabetes. Diabetes Care, 2019, 42, 2154-2157.                                                                                                 | 8.6 | 16        |
| 50 | Supporting Good Intentions With Good Evidence: How to Increase the Benefits of Diabetes Social<br>Media. Journal of Diabetes Science and Technology, 2019, 13, 974-978.                                                                                  | 2.2 | 16        |
| 51 | The Diabetes Technology Society Green Diabetes Initiative. Journal of Diabetes Science and Technology, 2020, 14, 507-512.                                                                                                                                | 2.2 | 16        |
| 52 | Engineered fungus derived FAD-dependent glucose dehydrogenase with acquired ability to utilize hexaammineruthenium(III) as an electron acceptor. Bioelectrochemistry, 2018, 123, 62-69.                                                                  | 4.6 | 15        |
| 53 | Standards for Medical Device Cybersecurity in 2018. Journal of Diabetes Science and Technology, 2018, 12, 743-746.                                                                                                                                       | 2.2 | 14        |
| 54 | Telemedicine for Diabetes After the COVID-19 Pandemic: We Can't Put the Toothpaste Back in the Tube or Turn Back the Clock. Journal of Diabetes Science and Technology, 2020, 14, 741-742.                                                               | 2.2 | 14        |

| #  | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of insulin degludec versus insulin glargine <scp>U100</scp> on time in range: <scp>SWITCH<br/>PRO</scp> , a crossover study of basal insulinâ€ŧreated adults with type 2 diabetes and risk factors for<br>hypoglycaemia. Diabetes, Obesity and Metabolism, 2021, 23, 2572-2581. | 4.4 | 14        |
| 56 | New Opportunities for Digital Health to Thrive. Journal of Diabetes Science and Technology, 2019, 13, 159-163.                                                                                                                                                                         | 2.2 | 13        |
| 57 | The Launch of the iCoDE Standard Project. Journal of Diabetes Science and Technology, 2022, 16, 887-895.                                                                                                                                                                               | 2.2 | 13        |
| 58 | Digital Diabetes Communication. Journal of Diabetes Science and Technology, 2016, 10, 1003-1005.                                                                                                                                                                                       | 2.2 | 12        |
| 59 | A Milestone in Point of Care Capillary Blood Glucose Monitoring of Critically Ill Hospitalized<br>Patients. Journal of Diabetes Science and Technology, 2018, 12, 1095-1100.                                                                                                           | 2.2 | 12        |
| 60 | Digital Connectivity: The Sixth Vital Sign. Journal of Diabetes Science and Technology, 2022, 16, 1303-1308.                                                                                                                                                                           | 2.2 | 12        |
| 61 | The First Recall of a Diabetes Device Because of Cybersecurity Risks. Journal of Diabetes Science and Technology, 2019, 13, 817-820.                                                                                                                                                   | 2.2 | 11        |
| 62 | The Need for Accuracy in Hemoglobin A1c Proficiency Testing: Why the Proposed CLIA Rule of 2019 Is a Step Backward. Journal of Diabetes Science and Technology, 2019, 13, 424-427.                                                                                                     | 2.2 | 11        |
| 63 | An Opportunity to Increase the Benefit of CGM Usage: The Need to Train the Patients Adequately.<br>Journal of Diabetes Science and Technology, 2020, 14, 983-986.                                                                                                                      | 2.2 | 11        |
| 64 | The Need for Precision Medicine to be Applied to Diabetes. Journal of Diabetes Science and Technology, 2020, 14, 1122-1128.                                                                                                                                                            | 2.2 | 10        |
| 65 | Pharmacoadherence: An Opportunity for Digital Health to Inform the Third Dimension of<br>Pharmacotherapy for Diabetes. Journal of Diabetes Science and Technology, 2021, 15, 177-183.                                                                                                  | 2.2 | 10        |
| 66 | Advances in Insulin Pump Infusion Sets Symposium Report. Journal of Diabetes Science and Technology,<br>2021, 15, 705-709.                                                                                                                                                             | 2.2 | 10        |
| 67 | User and Healthcare Professional Perspectives on Do-It-Yourself Artificial Pancreas Systems: A Need for Guidelines. Journal of Diabetes Science and Technology, 2022, 16, 224-227.                                                                                                     | 2.2 | 9         |
| 68 | Excess Mortality in COVID-19-Positive Versus COVID-19-Negative Inpatients With Diabetes: A Nationwide<br>Study. Diabetes Care, 2021, 44, e169-e170.                                                                                                                                    | 8.6 | 8         |
| 69 | Finding Real Value From Digital Diabetes Health: Is Digital Health Dead or in Need of Resuscitation?.<br>Journal of Diabetes Science and Technology, 2018, 12, 911-913.                                                                                                                | 2.2 | 7         |
| 70 | Postmarket Surveillance of Blood Glucose Monitor Systems Is Needed for Safety of Subjects and<br>Accurate Determination of Effectiveness in Clinical Trials of Diabetes Drugs and Devices. Journal of<br>Diabetes Science and Technology, 2019, 13, 419-423.                           | 2.2 | 7         |
| 71 | Green Diabetes Summit 2021. Journal of Diabetes Science and Technology, 2022, 16, 233-247.                                                                                                                                                                                             | 2.2 | 7         |
| 72 | Evaluating the usability and safety of the semaglutide singleâ€dose penâ€injectors through summative<br>(human factors) usability testing. Journal of Diabetes Investigation, 2021, 12, 978-987.                                                                                       | 2.4 | 6         |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Semaglutide singleâ€dose penâ€injector: Post hoc analysis of summative usability testing for weight<br>management. Diabetes, Obesity and Metabolism, 2021, 23, 2590-2594.                                                                                               | 4.4 | 6         |
| 74 | The End of the Road for the YSI 2300 Analyzer: Where Do We Go Now?. Journal of Diabetes Science and Technology, 2020, 14, 595-600.                                                                                                                                      | 2.2 | 5         |
| 75 | Automated Insulin Dosing Systems or Automated Insulin Delivery Systems? It is Time for Consistency.<br>Journal of Diabetes Science and Technology, 2021, 15, 211-213.                                                                                                   | 2.2 | 5         |
| 76 | Now Is the Time for a Security and Safety Standard for Consumer Smartphones Controlling Diabetes Devices. Journal of Diabetes Science and Technology, 2017, 11, 870-873.                                                                                                | 2.2 | 4         |
| 77 | Is Digital Health for Diabetes in an Investment Bubble?. Journal of Diabetes Science and Technology, 2020, 14, 165-169.                                                                                                                                                 | 2.2 | 4         |
| 78 | Diagnosing diabetes mellitus from smartphone-based vascular signals. Nature Reviews Endocrinology, 2020, 16, 681-682.                                                                                                                                                   | 9.6 | 4         |
| 79 | The Coronavirus 2019 Pandemic and Diabetes: An International Perspective. Journal of Diabetes Science and Technology, 2020, 14, 703-704.                                                                                                                                | 2.2 | 4         |
| 80 | The Benefit of Insulin Degludec/Liraglutide (IDegLira) Compared With Basal-Bolus Insulin Therapy is<br>Consistent Across Participant Subgroups With Type 2 Diabetes in the DUAL VII Randomized Trial.<br>Journal of Diabetes Science and Technology, 2021, 15, 636-645. | 2.2 | 4         |
| 81 | The Need for Sharps Waste Disposal Guidelines for Commercial Airports. Journal of Diabetes Science and Technology, 2022, 16, 1370-1375.                                                                                                                                 | 2.2 | 4         |
| 82 | The Diabetes Technology Society Green Declaration. Journal of Diabetes Science and Technology, 2022, 16, 215-217.                                                                                                                                                       | 2.2 | 4         |
| 83 | Impact of kidney function on the safety and efficacy of insulin degludec versus insulin glargine<br><scp>U300</scp> in people with type 2 diabetes: A post hoc analysis of the <scp>CONCLUDE</scp> trial.<br>Diabetes, Obesity and Metabolism, 2022, 24, 332-336.       | 4.4 | 4         |
| 84 | Response to Comment on Umpierrez and Klonoff. Diabetes Technology Update: Use of Insulin Pumps<br>and Continuous Glucose Monitoring in the Hospital. Diabetes Care 2018;41:1579–1589. Diabetes Care,<br>2019, 42, e66-e67.                                              | 8.6 | 3         |
| 85 | Barriers and Solutions to a Recently Noted Failure of Diabetes Care Outcomes to Improve From 2005 to 2016 in the United States. Journal of Diabetes Science and Technology, 2020, 14, 189-190.                                                                          | 2.2 | 3         |
| 86 | Predictors of Time-to-Repeat Point-of-Care Glucose Following Hypoglycemic Events in Hospitalized<br>Patients. Journal of Diabetes Science and Technology, 2020, 14, 526-534.                                                                                            | 2.2 | 3         |
| 87 | User experiences with second-generation 32-gauge × 4 mm vs. thinner comparator pen needles:<br>prospective randomized trial. Current Medical Research and Opinion, 2020, 36, 1591-1600.                                                                                 | 1.9 | 3         |
| 88 | Diabetes Technology and Waste: A Complex Story. Journal of Diabetes Science and Technology, 2021, ,<br>193229682110223.                                                                                                                                                 | 2.2 | 3         |
| 89 | Antioxidant-Induced Pseudohyperglycemia Due to Interference of Measurements by Blood Glucose<br>Monitors. Journal of Diabetes Science and Technology, 2021, 15, 1404-1405.                                                                                              | 2.2 | 3         |
| 90 | 1021-P: HbA1c Levels and Rates of Hypoglycemia with Insulin Degludec U200 and Insulin Glargine U300<br>Stratified by Renal Function Subgroups: Post Hoc Analysis from the CONCLUDE Trial. Diabetes, 2020,<br>69, .                                                      | 0.6 | 3         |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | 111-LB: Hepatic Insulin Delivery to Minimize Hypoglycemic Events in Persons with Type 1 Diabetes: The<br>OPTI-1 Study. Diabetes, 2020, 69, .                                                                               | 0.6  | 3         |
| 92  | Noninvasive Glucose Monitoring: In God We Trust—All Others Bring Data. Journal of Diabetes Science<br>and Technology, 2021, 15, 1211-1215.                                                                                 | 2.2  | 3         |
| 93  | Reduced hypoglycaemia using liverâ€ŧargeted insulin in individuals with type 1 diabetes. Diabetes, Obesity<br>and Metabolism, 2022, 24, 1762-1769.                                                                         | 4.4  | 3         |
| 94  | Input of Patients for New Diabetes Technology Products. Journal of Diabetes Science and Technology, 2021, 15, 983-985.                                                                                                     | 2.2  | 2         |
| 95  | A Gut-Centric Model of Metabolic Homeostasis. Journal of Diabetes Science and Technology, 2021, ,<br>193229682110445.                                                                                                      | 2.2  | 2         |
| 96  | Diabetes Technology Meeting 2021. Journal of Diabetes Science and Technology, 2022, ,<br>193229682210902.                                                                                                                  | 2.2  | 2         |
| 97  | The FDA Pilot Accreditation Scheme for Conformity: Will It Pertain to Cybersecurity of Diabetes Devices?. Journal of Diabetes Science and Technology, 2021, 15, 535-538.                                                   | 2.2  | 1         |
| 98  | Diabetes Technology Meeting 2020. Journal of Diabetes Science and Technology, 2021, 15, 916-960.                                                                                                                           | 2.2  | 1         |
| 99  | Treating an Unconscious Patient With Diabetes Wearing a Device Attached to Their Body. Journal of<br>Diabetes Science and Technology, 2022, 16, 583-586.                                                                   | 2.2  | 1         |
| 100 | A New Digital Point-of-Care Tool With Advanced Blood Glucose Measuring Technology. Journal of<br>Diabetes Science and Technology, 2022, , 193229682210927.                                                                 | 2.2  | 1         |
| 101 | Response to Comment on Umpierrez and Klonoff. Diabetes Technology Update: Use of Insulin Pumps<br>and Continuous Glucose Monitoring in the Hospital. Diabetes Care 2018;41:1579–1589. Diabetes Care,<br>2019, 42, e15-e15. | 8.6  | 0         |
| 102 | The Need to Change Regulatory Evaluation of Hypoglycemia in Trials of Diabetes Treatments. Journal of Diabetes Science and Technology, 2020, 14, 987-989.                                                                  | 2.2  | 0         |
| 103 | Regarding a successful treatment with artificial pancreas for a patient who attempted suicide using a<br>highâ€dose insulin s.c. injection. Acute Medicine & Surgery, 2020, 7, e567.                                       | 1.2  | 0         |
| 104 | Benefits of Conformity Assessment for Cybersecurity Standards of Diabetes Devices and Other<br>Medical Devices. Journal of Diabetes Science and Technology, 2021, 15, 193229682110181.                                     | 2.2  | 0         |
| 105 | Clinical Trials of COVID-19 Therapies Should Account for Diabetes and Hyperglycemia. Journal of Diabetes Science and Technology, 2021, 15, 1181-1187.                                                                      | 2.2  | 0         |
| 106 | The Availability of Sharps Disposal Bins: A Survey of Airports in California. Journal of Diabetes Science and Technology, 2021, , 193229682110398.                                                                         | 2.2  | 0         |
| 107 | Breakthrough technology for in-hospital glucose monitoring. Lancet Diabetes and Endocrinology,the, 2022, , .                                                                                                               | 11.4 | 0         |
| 108 | Trimetazidine Blocks Lipid Oxidation—Should it be Repurposed for Prevention and Treatment of<br>Diabetic Ketoacidosis?. Journal of Diabetes Science and Technology, 0, , 193229682211001.                                  | 2.2  | 0         |

| #   | ARTICLE                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Retained Diabetes Devices—A Literature Review. Journal of Diabetes Science and Technology, 0, ,<br>193229682211058. | 2.2 | Ο         |