Johan Hattne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6671617/publications.pdf

Version: 2024-02-01

52 papers 4,606 citations

30 h-index 52 g-index

75 all docs

75 docs citations

75 times ranked 4575 citing authors

#	Article	IF	CITATIONS
1	Ab initio phasing macromolecular structures using electron-counted MicroED data. Nature Methods, 2022, 19, 724-729.	19.0	29
2	A conformational change in the N terminus of SLC38A9 signals mTORC1 activation. Structure, 2021, 29, 426-432.e8.	3.3	17
3	MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	7.1	36
4	Low-Dose Data Collection and in MicroED. Methods in Molecular Biology, 2021, 2215, 309-319.	0.9	3
5	Benchmarking the ideal sample thickness in cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	37
6	MicroED structure of lipid-embedded mammalian mitochondrial voltage-dependent anion channel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32380-32385.	7.1	35
7	Experimental Phasing of MicroED Data Using Radiation Damage. Structure, 2020, 28, 458-464.e2.	3.3	18
8	Qualitative Analyses of Polishing and Precoating FIB Milled Crystals for MicroED. Structure, 2019, 27, 1594-1600.e2.	3.3	33
9	Collection of Continuous Rotation MicroED Data from Ion Beam-Milled Crystals of Any Size. Structure, 2019, 27, 545-548.e2.	3.3	58
10	Structural basis for substrate binding and specificity of a sodium–alanine symporter AgcS. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2086-2090.	7.1	14
11	MicroED data collection with SerialEM. Ultramicroscopy, 2019, 201, 77-80.	1.9	50
12	MicroED with the Falcon III direct electron detector. IUCrJ, 2019, 6, 921-926.	2.2	52
13	Towards in cellulo virus crystallography. Scientific Reports, 2018, 8, 3771.	3.3	11
14	Real-space analysis of radiation-induced specific changes with independent component analysis. Journal of Synchrotron Radiation, 2018, 25, 451-467.	2.4	8
15	Analysis of Global and Site-Specific Radiation Damage in Cryo-EM. Structure, 2018, 26, 759-766.e4.	3.3	152
16	MicroED structures of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13258-13263.	7.1	77
17	The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination. ACS Central Science, 2018, 4, 1587-1592.	11.3	307
18	Free-electron laser data for multiple-particle fluctuation scattering analysis. Scientific Data, 2018, 5, 180201.	5. 3	6

#	Article	IF	CITATIONS
19	Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nature Methods, 2017, 14, 399-402.	19.0	158
20	Flowâ€aligned, singleâ€shot fiber diffraction using a femtosecond Xâ€ray freeâ€electron laser. Cytoskeleton, 2017, 74, 472-481.	2.0	12
21	Atomic resolution structure determination by the cryoâ€EM method MicroED. Protein Science, 2017, 26, 8-15.	7.6	22
22	Atomic structures of fibrillar segments of hIAPP suggest tightly mated \hat{l}^2 -sheets are important for cytotoxicity. ELife, 2017, 6, .	6.0	95
23	The collection of MicroED data for macromolecular crystallography. Nature Protocols, 2016, 11, 895-904.	12.0	117
24	Modeling truncated pixel values of faint reflections in MicroED images. Journal of Applied Crystallography, 2016, 49, 1029-1034.	4.5	58
25	Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11232-11236.	7.1	95
26	Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. Structure, 2016, 24, 631-640.	3.3	88
27	MicroED data collection and processing. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, 353-360.	0.1	115
28	Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nature Communications, 2015, 6, 6435.	12.8	56
29	A revised partiality model and post-refinement algorithm for X-ray free-electron laser data. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1400-1410.	2.5	60
30	<i>Data Exploration Toolkit</i> for serial diffraction experiments. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 352-356.	2.5	28
31	Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 357-366.	2.5	18
32	Structure of the toxic core of α-synuclein from invisible crystals. Nature, 2015, 525, 486-490.	27.8	528
33	Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals. ELife, 2015, 4, .	6.0	106
34	Structure of catalase determined by MicroED. ELife, 2014, 3, e03600.	6.0	115
35	<i>dxtbx</i> : the diffraction experiment toolbox. Journal of Applied Crystallography, 2014, 47, 1459-1465.	4.5	29
36	Methods development for diffraction and spectroscopy studies of metalloenzymes at X-ray free-electron lasers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130590.	4.0	23

#	Article	IF	Citations
37	Improved crystal orientation and physical properties from single-shot XFEL stills. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 3299-3309.	2.5	38
38	Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nature Methods, 2014, 11, 545-548.	19.0	140
39	Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17122-17127.	7.1	122
40	Protein crystal structure obtained at 2.9 \tilde{A} resolution from injecting bacterial cells into an X-ray free-electron laser beam. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12769-12774.	7.1	111
41	Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 2014, 5, 4371.	12.8	206
42	The Mn ₄ Ca photosynthetic water-oxidation catalyst studied by simultaneous X-ray spectroscopy and crystallography using an X-ray free-electron laser. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130324.	4.0	17
43	L-Edge X-ray Absorption Spectroscopy of Dilute Systems Relevant to Metalloproteins Using an X-ray Free-Electron Laser. Journal of Physical Chemistry Letters, 2013, 4, 3641-3647.	4.6	64
44	Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature. Science, 2013, 340, 491-495.	12.6	378
45	New Python-based methods for data processing. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1274-1282.	2.5	95
46	Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19103-19107.	7.1	113
47	Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1584-1587.	2.5	167
48	Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9721-9726.	7.1	144
49	A moment invariant for evaluating the chirality of three-dimensional objects. Journal of the Royal Society Interface, 2011, 8, 144-151.	3.4	11
50	Pattern-recognition-based detection of planar objects in three-dimensional electron-density maps. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 834-842.	2.5	26
51	Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics, 2005, 21, 2923-2924.	4.1	273
52	Micro- and nanocrystal preparation for MicroED and XFEL serial crystallography by fragmentation of imperfect crystals. Protocol Exchange, 0, , .	0.3	2