
Johan Hattne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6671617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of the toxic core of $\hat{I}\pm$ -synuclein from invisible crystals. Nature, 2015, 525, 486-490.	27.8	528
2	Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature. Science, 2013, 340, 491-495.	12.6	378
3	The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination. ACS Central Science, 2018, 4, 1587-1592.	11.3	307
4	Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics, 2005, 21, 2923-2924.	4.1	273
5	Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nature Communications, 2014, 5, 4371.	12.8	206
6	Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1584-1587.	2.5	167
7	Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nature Methods, 2017, 14, 399-402.	19.0	158
8	Analysis of Global and Site-Specific Radiation Damage in Cryo-EM. Structure, 2018, 26, 759-766.e4.	3.3	152
9	Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9721-9726.	7.1	144
10	Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nature Methods, 2014, 11, 545-548.	19.0	140
11	Goniometer-based femtosecond crystallography with X-ray free electron lasers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17122-17127.	7.1	122
12	The collection of MicroED data for macromolecular crystallography. Nature Protocols, 2016, 11, 895-904.	12.0	117
13	Structure of catalase determined by MicroED. ELife, 2014, 3, e03600.	6.0	115
14	MicroED data collection and processing. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, 353-360.	0.1	115
15	Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19103-19107.	7.1	113
16	Protein crystal structure obtained at 2.9 Ã resolution from injecting bacterial cells into an X-ray free-electron laser beam. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12769-12774.	7.1	111
17	Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals. ELife, 2015, 4, .	6.0	106
18	New Python-based methods for data processing. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1274-1282.	2.5	95

Johan Hattne

#	Article	IF	CITATIONS
19	Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11232-11236.	7.1	95
20	Atomic structures of fibrillar segments of hIAPP suggest tightly mated \hat{I}^2 -sheets are important for cytotoxicity. ELife, 2017, 6, .	6.0	95
21	Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. Structure, 2016, 24, 631-640.	3.3	88
22	MicroED structures of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13258-13263.	7.1	77
23	L-Edge X-ray Absorption Spectroscopy of Dilute Systems Relevant to Metalloproteins Using an X-ray Free-Electron Laser. Journal of Physical Chemistry Letters, 2013, 4, 3641-3647.	4.6	64
24	A revised partiality model and post-refinement algorithm for X-ray free-electron laser data. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1400-1410.	2.5	60
25	Modeling truncated pixel values of faint reflections in MicroED images. Journal of Applied Crystallography, 2016, 49, 1029-1034.	4.5	58
26	Collection of Continuous Rotation MicroED Data from Ion Beam-Milled Crystals of Any Size. Structure, 2019, 27, 545-548.e2.	3.3	58
27	Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data. Nature Communications, 2015, 6, 6435.	12.8	56
28	MicroED with the Falcon III direct electron detector. IUCrJ, 2019, 6, 921-926.	2.2	52
29	MicroED data collection with SerialEM. Ultramicroscopy, 2019, 201, 77-80.	1.9	50
30	Improved crystal orientation and physical properties from single-shot XFEL stills. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 3299-3309.	2.5	38
31	Benchmarking the ideal sample thickness in cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
32	MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
33	MicroED structure of lipid-embedded mammalian mitochondrial voltage-dependent anion channel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32380-32385.	7.1	35
34	Qualitative Analyses of Polishing and Precoating FIB Milled Crystals for MicroED. Structure, 2019, 27, 1594-1600.e2.	3.3	33
35	<i>dxtbx</i> : the diffraction experiment toolbox. Journal of Applied Crystallography, 2014, 47, 1459-1465.	4.5	29
36	Ab initio phasing macromolecular structures using electron-counted MicroED data. Nature Methods, 2022, 19, 724-729.	19.0	29

Johan Hattne

#	Article	IF	CITATIONS
37	<i>Data Exploration Toolkit</i> for serial diffraction experiments. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 352-356.	2.5	28
38	Pattern-recognition-based detection of planar objects in three-dimensional electron-density maps. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 834-842.	2.5	26
39	Methods development for diffraction and spectroscopy studies of metalloenzymes at X-ray free-electron lasers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130590.	4.0	23
40	Atomic resolution structure determination by the cryoâ€EM method MicroED. Protein Science, 2017, 26, 8-15.	7.6	22
41	Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 357-366.	2.5	18
42	Experimental Phasing of MicroED Data Using Radiation Damage. Structure, 2020, 28, 458-464.e2.	3.3	18
43	The Mn ₄ Ca photosynthetic water-oxidation catalyst studied by simultaneous X-ray spectroscopy and crystallography using an X-ray free-electron laser. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130324.	4.0	17
44	A conformational change in the N terminus of SLC38A9 signals mTORC1 activation. Structure, 2021, 29, 426-432.e8.	3.3	17
45	Structural basis for substrate binding and specificity of a sodium–alanine symporter AgcS. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2086-2090.	7.1	14
46	Flowâ€aligned, singleâ€shot fiber diffraction using a femtosecond Xâ€ray freeâ€electron laser. Cytoskeleton, 2017, 74, 472-481.	2.0	12
47	A moment invariant for evaluating the chirality of three-dimensional objects. Journal of the Royal Society Interface, 2011, 8, 144-151.	3.4	11
48	Towards in cellulo virus crystallography. Scientific Reports, 2018, 8, 3771.	3.3	11
49	Real-space analysis of radiation-induced specific changes with independent component analysis. Journal of Synchrotron Radiation, 2018, 25, 451-467.	2.4	8
50	Free-electron laser data for multiple-particle fluctuation scattering analysis. Scientific Data, 2018, 5, 180201.	5.3	6
51	Low-Dose Data Collection and in MicroED. Methods in Molecular Biology, 2021, 2215, 309-319.	0.9	3
52	Micro- and nanocrystal preparation for MicroED and XFEL serial crystallography by fragmentation of imperfect crystals. Protocol Exchange, 0, , .	0.3	2