
Yury O Chernoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6671024/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of molecular tools for diagnosis of Alzheimer's disease that are based on detection of amyloidogenic proteins. Prion, 2021, 15, 56-69.	1.8	12
2	Design and synthesis of novel tacrine–indole hybrids as potential multitarget-directed ligands for the treatment of Alzheimer's disease. Future Medicinal Chemistry, 2021, 13, 785-804.	2.3	5
3	Modeling Amyloid Aggregation Kinetics: A Case Study with Sup35NM. Journal of Physical Chemistry B, 2021, 125, 4955-4963.	2.6	3
4	Regulation of the endocytosis and prion-chaperoning machineries by yeast E3 ubiquitin ligase Rsp5 as revealed by orthogonal ubiquitin transfer. Cell Chemical Biology, 2021, 28, 1283-1297.e8.	5.2	9
5	Aggregation and Prion-Inducing Properties of the C-Protein Gamma Subunit Ste18 are Regulated by Membrane Association. International Journal of Molecular Sciences, 2020, 21, 5038.	4.1	4
6	Functional Mammalian Amyloids and Amyloid-Like Proteins. Life, 2020, 10, 156.	2.4	27
7	Risk of Alzheimer's Disease in Cancer Patients: Analysis of Mortality Data from the US SEER Population-Based Registries. Cancers, 2020, 12, 796.	3.7	15
8	Application of yeast to studying amyloid and prion diseases. Advances in Genetics, 2020, 105, 293-380.	1.8	19
9	Yeast Models for Amyloids and Prions: Environmental Modulation and Drug Discovery. Molecules, 2019, 24, 3388.	3.8	22
10	Role of the Cell Asymmetry Apparatus and Ribosome-Associated Chaperones in the Destabilization of a <i>Saccharomyces cerevisiae</i> Prion by Heat Shock. Genetics, 2019, 212, 757-771.	2.9	11
11	Protein Misfolding during Pregnancy: New Approaches to Preeclampsia Diagnostics. International Journal of Molecular Sciences, 2019, 20, 6183.	4.1	30
12	Modulation of the Formation of Aβ- and Sup35NM-Based Amyloids by Complex Interplay of Specific and Nonspecific Ion Effects. Journal of Physical Chemistry B, 2018, 122, 4972-4981.	2.6	9
13	Mammalian amyloidogenic proteins promote prion nucleation in yeast. Journal of Biological Chemistry, 2018, 293, 3436-3450.	3.4	23
14	Differential effects of chaperones on yeast prions: CURrent view. Current Genetics, 2018, 64, 317-325.	1.7	29
15	Biomolecular Assemblies: Moving from Observation to Predictive Design. Chemical Reviews, 2018, 118, 11519-11574.	47.7	71
16	A standard model of Alzheimer's disease?. Prion, 2018, 12, 261-265.	1.8	20
17	Yeast Short-Lived Actin-Associated Protein Forms a Metastable Prion in Response to Thermal Stress. Cell Reports, 2017, 18, 751-761.	6.4	43
18	To CURe or not to CURe? Differential effects of the chaperone sorting factor Cur1 on yeast prions are mediated by the chaperone Sis1. Molecular Microbiology, 2017, 105, 242-257.	2.5	26

#	Article	IF	CITATIONS
19	Prion-based memory of heat stress in yeast. Prion, 2017, 11, 151-161.	1.8	21
20	Proteolysis suppresses spontaneous prion generation in yeast. Journal of Biological Chemistry, 2017, 292, 20113-20124.	3.4	9
21	Prions, Chaperones, and Proteostasis in Yeast. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023663.	5.5	63
22	In memory of Susan Lindquist (1949–2016). Prion, 2017, 11, 1-3.	1.8	1
23	Are there prions in plants?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6097-6099.	7.1	13
24	Strain conformation controls the specificity of cross-species prion transmission in the yeast model. Prion, 2016, 10, 269-282.	1.8	5
25	Distinct types of translation termination generate substrates for ribosome-associated quality control. Nucleic Acids Research, 2016, 44, 6840-6852.	14.5	17
26	Contributions of the Prion Protein Sequence, Strain, and Environment to the Species Barrier. Journal of Biological Chemistry, 2016, 291, 1277-1288.	3.4	23
27	Dual role of ribosome-associated chaperones in prion formation and propagation. Current Genetics, 2016, 62, 677-685.	1.7	30
28	RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils. EMBO Journal, 2015, 34, 2363-2382.	7.8	47
29	The call of the unknown: The story of [<i>PSI</i> ⁺]. Prion, 2015, 9, 315-317.	1.8	1
30	Feedback control of prion formation and propagation by the ribosomeâ€associated chaperone complex. Molecular Microbiology, 2015, 96, 621-632.	2.5	36
31	Physiological and environmental control of yeast prions. FEMS Microbiology Reviews, 2014, 38, 326-344.	8.6	55
32	Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton. IUBMB Life, 2014, 66, 538-545.	3.4	13
33	Stress-dependent Proteolytic Processing of the Actin Assembly Protein Lsb1 Modulates a Yeast Prion. Journal of Biological Chemistry, 2014, 289, 27625-27639.	3.4	29
34	Identification of PrP sequences essential for the interaction between the PrP polymers and Aβ peptide in a yeast-based assay. Prion, 2013, 7, 469-476.	1.8	21
35	Prionreviewer acknowledgments. Prion, 2013, 7, 441-442.	1.8	0
36	lon-specific Effects on Prion Nucleation and Strain Formation. Journal of Biological Chemistry, 2013, 288, 30300-30308.	3.4	21

#	Article	IF	CITATIONS
37	Polyglutamine Toxicity Is Controlled by Prion Composition and Gene Dosage in Yeast. PLoS Genetics, 2012, 8, e1002634.	3.5	45
38	A special focus issue on the materials of Prion 2011 meeting in Montreal, Canada. Prion, 2012, 6, 95-96.	1.8	0
39	Prions in Yeast. Genetics, 2012, 191, 1041-1072.	2.9	339
40	Regulation of Chaperone Effects on a Yeast Prion by Cochaperone Sgt2. Molecular and Cellular Biology, 2012, 32, 4960-4970.	2.3	56
41	Prion Induction by the Short-Lived, Stress-Induced Protein Lsb2 Is Regulated by Ubiquitination and Association with the Actin Cytoskeleton. Molecular Cell, 2011, 43, 242-252.	9.7	73
42	Destabilization and Recovery of a Yeast Prion after Mild Heat Shock. Journal of Molecular Biology, 2011, 408, 432-448.	4.2	73
43	Mutations and Natural Selection in the Protein World. Journal of Molecular Biology, 2011, 413, 525-526.	4.2	2
44	Sequence specificity and fidelity of prion transmission in yeast. Seminars in Cell and Developmental Biology, 2011, 22, 444-451.	5.0	14
45	The Hofmeister effect on amyloid formation using yeast prion protein. Protein Science, 2010, 19, 47-56.	7.6	66
46	Genetic and epigenetic control of the efficiency and fidelity of cross-species prion transmission. Molecular Microbiology, 2010, 76, 1483-1499.	2.5	45
47	Pathogenic Polyglutamine Tracts Are Potent Inducers of Spontaneous Sup35 and Rnq1 Amyloidogenesis. PLoS ONE, 2010, 5, e9642.	2.5	14
48	Abnormal proteins can form aggresome in yeast: aggresomeâ€ŧargeting signals and components of the machinery. FASEB Journal, 2009, 23, 451-463.	0.5	150
49	Hsp104 and Prion Propagation. Protein and Peptide Letters, 2009, 16, 598-605.	0.9	59
50	Prion: disease or relief?. Nature Cell Biology, 2008, 10, 1019-1021.	10.3	2
51	Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Research, 2008, 18, 1979-1990.	5.5	800
52	Identity determinants of infectious proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13191-13192.	7.1	9
53	Sequence specificity of amyloid propagation in the yeast model. FASEB Journal, 2008, 22, 1001.3.	0.5	0
54	Prion formation in yeast is influenced by alterations of the ubiquitin proteolysis. FASEB Journal, 2008, 22, 604.2.	0.5	0

#	Article	IF	CITATIONS
55	Effects of Ubiquitin System Alterations on the Formation and Loss of a Yeast Prion. Journal of Biological Chemistry, 2007, 282, 3004-3013.	3.4	74
56	Endocytosis machinery is involved in aggregation of proteins with expanded polyglutamine domains. FASEB Journal, 2007, 21, 1915-1925.	0.5	63
57	Biological Roles of Prion Domains. Prion, 2007, 1, 228-235.	1.8	33
58	Chaperone Effects on Prion and Nonprion Aggregates. Prion, 2007, 1, 217-222.	1.8	51
59	Stress and prions: Lessons from the yeast model. FEBS Letters, 2007, 581, 3695-3701.	2.8	77
60	Prion species barrier between the closely related yeast proteins is detected despite coaggregation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2791-2796.	7.1	61
61	Modulation of Prion Formation, Aggregation, and Toxicity by the Actin Cytoskeleton in Yeast. Molecular and Cellular Biology, 2006, 26, 617-629.	2.3	133
62	Prion variant maintained only at high levels of the Hsp104 disaggregase. Current Genetics, 2006, 49, 21-29.	1.7	62
63	TheSaccharomyces cerevisiae ESU1 gene, which is responsible for enhancement of termination suppression, corresponds to the $3\hat{a}\in^2$ -terminal half ofGAL11. Yeast, 2005, 22, 895-906.	1.7	5
64	Modulation of Prion-dependent Polyglutamine Aggregation and Toxicity by Chaperone Proteins in the Yeast Model. Journal of Biological Chemistry, 2005, 280, 22809-22818.	3.4	122
65	Hsp70 Chaperones as Modulators of Prion Life Cycle. Genetics, 2005, 169, 1227-1242.	2.9	153
66	Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Research, 2005, 33, 6494-6506.	14.5	746
67	Replication vehicles of protein-based inheritance. Trends in Biotechnology, 2004, 22, 549-552.	9.3	9
68	Amyloidogenic domains, prions and structural inheritance: rudiments of early life or recent acquisition?. Current Opinion in Chemical Biology, 2004, 8, 665-671.	6.1	74
69	Do Amyloids Remember Their Origin? New Insights into the Prion Species Barrier. Molecular Cell, 2004, 14, 147-148.	9.7	5
70	Aggregation of Expanded Polyglutamine Domain in Yeast Leads to Defects in Endocytosis. Molecular and Cellular Biology, 2003, 23, 7554-7565.	2.3	98
71	Pleiotropic Effects of Ubp6 Loss on Drug Sensitivities and Yeast Prion Are Due to Depletion of the Free Ubiquitin Pool. Journal of Biological Chemistry, 2003, 278, 52102-52115.	3.4	102
72	Huntingtin toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. Journal of Cell Biology, 2002, 157, 997-1004.	5.2	348

#	Article	IF	CITATIONS
73	Analysis of prion factors in yeast. Methods in Enzymology, 2002, 351, 499-538.	1.0	94
74	Genetic interaction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18 S rRNA. Journal of Molecular Biology, 2001, 305, 715-727.	4.2	28
75	Mutation processes at the protein level: is Lamarck back?. Mutation Research - Reviews in Mutation Research, 2001, 488, 39-64.	5.5	87
76	Mutagenic specificity of the base analog 6-N-hydroxylaminopurine in the LYS2 gene of yeast Saccharomyces cerevisiae. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 473, 151-161.	1.0	12
77	Mechanism of Prion Loss after Hsp104 Inactivation in Yeast. Molecular and Cellular Biology, 2001, 21, 4656-4669.	2.3	195
78	Molecular Population Genetics and Evolution of a Prion-like Protein in <i>Saccharomyces cerevisiae</i> . Genetics, 2001, 159, 527-535.	2.9	54
79	Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Molecular Microbiology, 2000, 35, 865-876.	2.5	188
80	Antagonistic Interactions between Yeast Chaperones Hsp104 and Hsp70 in Prion Curing. Molecular and Cellular Biology, 1999, 19, 1325-1333.	2.3	258
81	Evidence for a Protein Mutator in Yeast: Role of the Hsp70-Related Chaperone Ssb in Formation, Stability, and Toxicity of the [<i>PSI</i>] Prion. Molecular and Cellular Biology, 1999, 19, 8103-8112.	2.3	238
82	Genetic Study of Interactions Between the Cytoskeletal Assembly Protein Sla1 and Prion-Forming Domain of the Release Factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics, 1999, 153, 81-94.	2.9	123
83	Genetic and Environmental Factors Affecting the <i>de novo</i> Appearance of the <i>[PSI</i> Â+ Â <i>]</i> Prion in <i>Saccharomyces cerevisiae</i> . Genetics, 1997, 147, 507-519.	2.9	448
84	Genesis and Variability of [<i>PSI</i>] Prion Factors in <i>Saccharomyces cerevisiae</i> . Genetics, 1996, 144, 1375-1386.	2.9	519
85	The accuracy center of a eukaryotic ribosome. Biochemistry and Cell Biology, 1995, 73, 1141-1149.	2.0	28
86	Response from Chernoff et al Trends in Microbiology, 1995, 3, 369.	7.7	5
87	Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Current Genetics, 1993, 24, 268-270.	1.7	273
88	Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Molecular Microbiology, 1993, 7, 683-692.	2.5	297
89	Dosage-Dependent Modifiers of Psi-Dependnet Omnipotent Suppression in Yeast. , 1993, , 101-110.		11
90	Dosage-dependent translational suppression in yeastSaccharomyces cerevisiae. Yeast, 1992, 8, 489-499.	1.7	63

#	Article	IF	CITATIONS
91	Interactions between chromosomal omnipotent suppressors and extrachromosomal effectors in Saccharomyces cerevisiae. Current Genetics, 1991, 19, 243-248.	1.7	12