List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6670999/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Microbial Metabolite Inspired <i>Ĵ²</i> â€₽eptide Polymers Displaying Potent and Selective Antifungal<br>Activity. Advanced Science, 2022, 9, e2104871.                                                                          | 11.2 | 19        |
| 2  | 1,1,3,3-Tetramethylguanidine-Mediated Zwitterionic Ring-Opening Polymerization of Sarcosine-Derived<br><i>N</i> -Thiocarboxyanhydride toward Well-Defined Polysarcosine. Macromolecules, 2022, 55,<br>2509-2516.                 | 4.8  | 6         |
| 3  | Antifouling zwitterionic poly-β-peptides. Applied Materials Today, 2022, 27, 101511.                                                                                                                                             | 4.3  | 6         |
| 4  | Unraveling the Role of Charge Patterning in the Micellar Structure of Sequence-Defined Amphiphilic Peptoid Oligomers by Molecular Dynamics Simulations. Macromolecules, 2022, 55, 5197-5212.                                     | 4.8  | 8         |
| 5  | Dealing with the Foreignâ€Body Response to Implanted Biomaterials: Strategies and Applications of New<br>Materials. Advanced Functional Materials, 2021, 31, 2007226.                                                            | 14.9 | 114       |
| 6  | Controlled ring-opening polymerization of <i>N</i> -(3- <i>tert</i> -butoxy-3-oxopropyl) glycine derived<br><i>N</i> -carboxyanhydrides towards well-defined peptoid-based polyacids. Polymer Chemistry, 2021, 12,<br>1540-1548. | 3.9  | 7         |
| 7  | Foreignâ€Body Responses: Dealing with the Foreignâ€Body Response to Implanted Biomaterials: Strategies<br>and Applications of New Materials (Adv. Funct. Mater. 6/2021). Advanced Functional Materials, 2021, 31,<br>2170040.    | 14.9 | 3         |
| 8  | Hydrophobe Containing Polypeptoids Complex with Lipids and Induce Fusogenesis of Lipid Vesicles.<br>Journal of Physical Chemistry B, 2021, 125, 3145-3152.                                                                       | 2.6  | 5         |
| 9  | Modulating the Molecular Geometry and Solution Self-Assembly of Amphiphilic Polypeptoid Block<br>Copolymers by Side Chain Branching Pattern. Journal of the American Chemical Society, 2021, 143,<br>5890-5902.                  | 13.7 | 46        |
| 10 | The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomaterialia, 2021, 126, 45-62.                                                                                                                        | 8.3  | 25        |
| 11 | Solution Self-Assembly of Coil-Crystalline Diblock Copolypeptoids Bearing Alkyl Side Chains.<br>Polymers, 2021, 13, 3131.                                                                                                        | 4.5  | 9         |
| 12 | Bio-inspired poly-DL-serine materials resist the foreign-body response. Nature Communications, 2021, 12, 5327.                                                                                                                   | 12.8 | 33        |
| 13 | Dual mechanism β-amino acid polymers promoting cell adhesion. Nature Communications, 2021, 12, 562.                                                                                                                              | 12.8 | 54        |
| 14 | A sandcastle worm-inspired strategy to functionalize wet hydrogels. Nature Communications, 2021, 12, 6331.                                                                                                                       | 12.8 | 27        |
| 15 | Targeted and Stimulus-Responsive Delivery of Surfactant to the Oil–Water Interface for Applications<br>in Oil Spill Remediation. ACS Applied Materials & Interfaces, 2020, 12, 1840-1849.                                        | 8.0  | 33        |
| 16 | Clay Nanotube Liquid Marbles Enhanced with Inner Biofilm Formation for the Encapsulation and Storage of Bacteria at Room Temperature. ACS Applied Nano Materials, 2020, 3, 1263-1271.                                            | 5.0  | 27        |
| 17 | Cyclic Topology Enhancing Structural Ordering and Stability of Comb-Shaped Polypeptoid Thin Films against Melt-Induced Dewetting. Macromolecules, 2020, 53, 7601-7612.                                                           | 4.8  | 10        |
| 18 | Silkâ€Inspired βâ€Peptide Materials Resist Fouling and the Foreignâ€Body Response. Angewandte Chemie, 2020, 132, 9673-9680.                                                                                                      | 2.0  | 7         |

2

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Silkâ€Inspired βâ€Peptide Materials Resist Fouling and the Foreignâ€Body Response. Angewandte Chemie -<br>International Edition, 2020, 59, 9586-9593.                                                                                            | 13.8 | 56        |
| 20 | Waterâ€Insensitive Synthesis of Polyâ€Î²â€Peptides with Defined Architecture. Angewandte Chemie, 2020, 132, 7307-7311.                                                                                                                           | 2.0  | 3         |
| 21 | Waterâ€Insensitive Synthesis of Polyâ€Î²â€Peptides with Defined Architecture. Angewandte Chemie -<br>International Edition, 2020, 59, 7240-7244.                                                                                                 | 13.8 | 50        |
| 22 | Investigation of Amphiphilic Polypeptoid-Functionalized Halloysite Nanotubes as Emulsion Stabilizer for Oil Spill Remediation. ACS Applied Materials & amp; Interfaces, 2019, 11, 27944-27953.                                                   | 8.0  | 54        |
| 23 | Impact of Antifouling PEG Layer on the Performance of Functional Peptides in Regulating Cell<br>Behaviors. Journal of the American Chemical Society, 2019, 141, 16772-16780.                                                                     | 13.7 | 133       |
| 24 | Stoppers and Skins on Clay Nanotubes Help Stabilize Oil-in-Water Emulsions and Modulate the Release of Encapsulated Surfactants. ACS Applied Nano Materials, 2019, 2, 3490-3500.                                                                 | 5.0  | 19        |
| 25 | Thermoresponsive Behavior of Polypeptoid Nanostructures Investigated with Heated Atomic Force<br>Microscopy: Implications toward the Development of Smart Coatings for Surface-Based Sensors. ACS<br>Applied Nano Materials, 2019, 2, 7617-7625. | 5.0  | 6         |
| 26 | Amphiphilic Polypeptoids Rupture Vesicle Bilayers To Form Peptoid–Lipid Fragments Effective in<br>Enhancing Hydrophobic Drug Delivery. Langmuir, 2019, 35, 15335-15343.                                                                          | 3.5  | 12        |
| 27 | Crystallization-Driven Self-Assembly of Coil–Comb-Shaped Polypeptoid Block Copolymers: Solution<br>Morphology and Self-Assembly Pathways. Macromolecules, 2019, 52, 8867-8877.                                                                   | 4.8  | 42        |
| 28 | Investigation of Secondary Amine-Derived Aminal Bond Exchange toward the Development of Covalent<br>Adaptable Networks. Macromolecules, 2019, 52, 495-503.                                                                                       | 4.8  | 38        |
| 29 | Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers. Journal of the American Chemical Society, 2018, 140, 4100-4109.                                                                                                     | 13.7 | 72        |
| 30 | Bacterial proliferation on clay nanotube Pickering emulsions for oil spill bioremediation. Colloids and Surfaces B: Biointerfaces, 2018, 164, 27-33.                                                                                             | 5.0  | 71        |
| 31 | Polypeptoid polymers: Synthesis, characterization, and properties. Biopolymers, 2018, 109, e23070.                                                                                                                                               | 2.4  | 67        |
| 32 | Organic Acid Promoted Controlled Ring-Opening Polymerization of α-Amino Acid-Derived<br><i>N</i> -thiocarboxyanhydrides (NTAs) toward Well-defined Polypeptides. ACS Macro Letters, 2018, 7,<br>1272-1277.                                       | 4.8  | 26        |
| 33 | Engineered Clays as Sustainable Oil Dispersants in the Presence of Model Hydrocarbon Degrading<br>Bacteria: The Role of Bacterial Sequestration and Biofilm Formation. ACS Sustainable Chemistry and<br>Engineering, 2018, 6, 14143-14153.       | 6.7  | 29        |
| 34 | Synthesis and Characterization of Well-Defined PEGylated Polypeptoids as Protein-Resistant Polymers.<br>Biomacromolecules, 2017, 18, 951-964.                                                                                                    | 5.4  | 46        |
| 35 | Amphiphilic Polypeptoids Serve as the Connective Glue to Transform Liposomes into Multilamellar Structures with Closely Spaced Bilayers. Langmuir, 2017, 33, 2780-2789.                                                                          | 3.5  | 16        |
| 36 | Unusual molecular mechanism behind the thermal response of polypeptoids in aqueous solutions.<br>Physical Chemistry Chemical Physics, 2017, 19, 10878-10888.                                                                                     | 2.8  | 11        |

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Aggregation of cyclic polypeptoids bearing zwitterionic end-groups with attractive dipole–dipole and solvophobic interactions: a study by small-angle neutron scattering and molecular dynamics simulation. Physical Chemistry Chemical Physics, 2017, 19, 14388-14400. | 2.8 | 10        |
| 38 | Interfacial Ring-Opening Polymerization of Amino-Acid-Derived <i>N</i> -Thiocarboxyanhydrides<br>Toward Well-Defined Polypeptides. ACS Macro Letters, 2017, 6, 836-840.                                                                                                 | 4.8 | 41        |
| 39 | Cationic Polypeptoids with Optimized Molecular Characteristics toward Efficient Nonviral Gene<br>Delivery. ACS Applied Materials & Interfaces, 2017, 9, 23476-23486.                                                                                                    | 8.0 | 24        |
| 40 | 1,1,3,3-Tetramethylguanidine-Promoted Ring-Opening Polymerization of N-Butyl N-Carboxyanhydride<br>Using Alcohol Initiators. Macromolecules, 2016, 49, 2002-2012.                                                                                                       | 4.8 | 44        |
| 41 | Pronounced Dielectric and Hydration/Dehydration Behaviors of Monopolar<br>Poly( <i>N</i> -alkylglycine)s in Aqueous Solution. Journal of Physical Chemistry B, 2016, 120, 9978-9986.                                                                                    | 2.6 | 2         |
| 42 | Dynamic Covalent Polymer Networks Based on Degenerative Imine Bond Exchange: Tuning the Malleability and Self-Healing Properties by Solvent. Macromolecules, 2016, 49, 6277-6284.                                                                                       | 4.8 | 310       |
| 43 | Synthesis and Characterization of Cleavable Core-Cross-Linked Micelles Based on Amphiphilic Block<br>Copolypeptoids as Smart Drug Carriers. Biomacromolecules, 2016, 17, 852-861.                                                                                       | 5.4 | 53        |
| 44 | Amidine-Mediated Zwitterionic Ring-Opening Polymerization of <i>N</i> -Alkyl<br><i>N</i> -Carboxyanhydride: Mechanism, Kinetics, and Architecture Elucidation. Macromolecules, 2016,<br>49, 1163-1171.                                                                  | 4.8 | 49        |
| 45 | Directed Growth of Polymer Nanorods Using Surface-Initiated Ring-Opening Polymerization of<br><i>N</i> -Allyl <i>N</i> -Carboxyanhydride. ACS Applied Materials & Interfaces, 2016, 8, 4014-4022.                                                                       | 8.0 | 15        |
| 46 | Colorful Polyelectrolytes: An Atom Transfer Radical Polymerization Route to Fluorescent<br>Polystyrene Sulfonate. Journal of Fluorescence, 2016, 26, 609-615.                                                                                                           | 2.5 | 4         |
| 47 | Sample stage designed for force modulation microscopy using a tip-mounted AFM scanner. Analyst,<br>The, 2016, 141, 1753-1760.                                                                                                                                           | 3.5 | 4         |
| 48 | Thermoreversible and Injectable ABC Polypeptoid Hydrogels: Controlling the Hydrogel Properties through Molecular Design. Chemistry of Materials, 2016, 28, 727-737.                                                                                                     | 6.7 | 70        |
| 49 | Chemical approaches for nanoscale patterning based on particle lithography with proteins and organic thin films. Nanotechnology Reviews, 2015, 4, 129-143.                                                                                                              | 5.8 | 11        |
| 50 | Non-ionic water-soluble "clickable―α-helical polypeptides: synthesis, characterization and side chain<br>modification. Polymer Chemistry, 2015, 6, 1226-1229.                                                                                                           | 3.9 | 17        |
| 51 | Special issue â€~Cyclic polymers: New developments'. Reactive and Functional Polymers, 2014, 80, 1-2.                                                                                                                                                                   | 4.1 | 10        |
| 52 | First Investigation of the Kinetic Hydrate Inhibitor Performance of Poly( <i>N</i> -alkylglycine)s. Energy<br>& Fuels, 2014, 28, 6889-6896.                                                                                                                             | 5.1 | 37        |
| 53 | Synthesis and solid-state self-assembly of poly(ethylene glycol)-b-poly(γ-benzyl-l-glutamate)s and single-walled carbon nanotubes. Journal of Polymer Science Part A, 2014, 52, 1905-1915.                                                                              | 2.3 | 3         |
| 54 | Synthesis and characterization of thermo-responsive polypeptoid bottlebrushes. Polymer Chemistry, 2014, 5, 1418-1426.                                                                                                                                                   | 3.9 | 37        |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Crystallization and Melting Behaviors of Cyclic and Linear Polypeptoids with Alkyl Side Chains.<br>Macromolecules, 2013, 46, 8213-8223.                                                                                                                        | 4.8  | 77        |
| 56 | Crystallization-Driven Thermoreversible Gelation of Coil-Crystalline Cyclic and Linear Diblock<br>Copolypeptoids. ACS Macro Letters, 2013, 2, 436-440.                                                                                                         | 4.8  | 53        |
| 57 | Solid state self-assembly of the single-walled carbon nanotubes and poly(γ-benzyl-l -glutamate)s with different conformations. Journal of Polymer Science Part A, 2013, 51, 4489-4497.                                                                         | 2.3  | 6         |
| 58 | <i>N</i> -Heterocyclic Carbene-Mediated Zwitterionic Polymerization of N-Substituted<br><i>N</i> -Carboxyanhydrides toward Poly(α-peptoid)s: Kinetic, Mechanism, and Architectural Control.<br>Journal of the American Chemical Society, 2012, 134, 9163-9171. | 13.7 | 149       |
| 59 | Thermoresponsive Poly(α-peptoid)s: Tuning the Cloud Point Temperatures by Composition and Architecture. ACS Macro Letters, 2012, 1, 580-584.                                                                                                                   | 4.8  | 117       |
| 60 | Polypeptoid Materials: Current Status and Future Perspectives. Macromolecules, 2012, 45, 5833-5841.                                                                                                                                                            | 4.8  | 160       |
| 61 | Coreâ^'Shell Molecular Bottlebrushes with Helical Polypeptide Backbone: Synthesis, Characterization, and Solution Conformations. Macromolecules, 2011, 44, 1491-1499.                                                                                          | 4.8  | 91        |
| 62 | Multi-functionalization of helical block copoly( $\hat{l}$ ±-peptide)s by orthogonal chemistry. Polymer Chemistry, 2011, 2, 1542.                                                                                                                              | 3.9  | 68        |
| 63 | Synthesis and Characterization of Cyclic Brush-Like Polymers by <i>N</i> -Heterocyclic<br>Carbene-Mediated Zwitterionic Polymerization of <i>N</i> Propargyl <i>N</i> -Carboxyanhydride and<br>the Grafting-to Approach. Macromolecules, 2011, 44, 9063-9074.  | 4.8  | 99        |
| 64 | Top-Down Multidimensional Mass Spectrometry Methods for Synthetic Polymer Analysis.<br>Macromolecules, 2011, 44, 4555-4564.                                                                                                                                    | 4.8  | 65        |
| 65 | Synthesis and Characterization of Amphiphilic Cyclic Diblock Copolypeptoids from<br><i>N</i> -Heterocyclic Carbene-Mediated Zwitterionic Polymerization of <i>N</i> -Substituted<br><i>N</i> -Carboxyanhydride. Macromolecules, 2011, 44, 9574-9585.           | 4.8  | 118       |
| 66 | Electrical transport measurements of highly conductive nitrogen-doped multiwalled carbon<br>nanotubes/poly(bisphenol A carbonate) composites. Journal of Materials Research, 2011, 26, 2854-2859.                                                              | 2.6  | 10        |
| 67 | Synthesis and Characterization of Helix-Coil Block Copoly(Î $\pm$ -peptoid)s. ACS Symposium Series, 2011, , 71-79.                                                                                                                                             | 0.5  | 5         |
| 68 | Thermoreversible gelation of helical polypeptide/singleâ€walled carbon nanotubes and their solidâ€state<br>structures. Journal of Polymer Science Part A, 2011, 49, 3228-3238.                                                                                 | 2.3  | 13        |
| 69 | Synthesis and characterization of cyclic and linear helical poly(αâ€peptoid)s by <i>N</i> â€heterocyclic<br>carbeneâ€mediated ringâ€opening polymerizations of <i>N</i> â€substituted <i>N</i> â€carboxyanhydrides.<br>Biopolymers, 2011, 96, 596-603.         | 2.4  | 59        |
| 70 | A resonance Raman study of carboxyl induced defects in single-walled carbon nanotubes. Physica B:<br>Condensed Matter, 2010, 405, 4570-4573.                                                                                                                   | 2.7  | 19        |
| 71 | Poly(γâ€benzylâ€ <scp>L</scp> â€glutamate)â€functionalized singleâ€walled carbon nanotubes from<br>surfaceâ€initiated ringâ€opening polymerizations of <i>N</i> â€carboxylanhydride. Journal of Polymer<br>Science Part A, 2010, 48, 2340-2350.                | 2.3  | 24        |
| 72 | Formation of highly conductive composite coatings and their applications to broadband antennas and mechanical transducers. Journal of Materials Research, 2010, 25, 1741-1747.                                                                                 | 2.6  | 11        |

| #  | Article                                                                                                                                                                                                                                                                        | IF         | CITATIONS           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|
| 73 | General Route toward Side-Chain-Functionalized α-Helical Polypeptides. Biomacromolecules, 2010, 11, 1585-1592.                                                                                                                                                                 | 5.4        | 129                 |
| 74 | Cyclic Poly(α-peptoid)s and Their Block Copolymers from N-Heterocyclic Carbene-Mediated Ring-Opening<br>Polymerizations of N-Substituted <i>N</i> -Carboxylanhydrides. Journal of the American Chemical<br>Society, 2009, 131, 18072-18074.                                    | 13.7       | 246                 |
| 75 | Electrical transport measurements of highly conductive carbon nanotube/poly(bisphenol A) Tj ETQq1 1 0.7843                                                                                                                                                                     | 14 rgBT /O | verlock 10 Tf<br>41 |
| 76 | Formation of Tellurium Nanocrystals during Anaerobic Growth of Bacteria That Use Te Oxyanions as Respiratory Electron Acceptors. Applied and Environmental Microbiology, 2007, 73, 2135-2143.                                                                                  | 3.1        | 200                 |
| 77 | Poly(l-lactide) (PLLA)/Multiwalled Carbon Nanotube (MWCNT) Composite:Â Characterization and<br>Biocompatibility Evaluation. Journal of Physical Chemistry B, 2006, 110, 12910-12915.                                                                                           | 2.6        | 220                 |
| 78 | Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding. Journal of Materials Research, 2006, 21, 1071-1077.                                                                                                                 | 2.6        | 53                  |
| 79 | Doping Properties of Polydithienylmethine:Â A Study on the Correlation between Polymer Chain Length,<br>Spectroscopy, and Transport. Journal of Physical Chemistry B, 2006, 110, 3924-3929.                                                                                    | 2.6        | 5                   |
| 80 | Synthesis and Structural Characterization of (Perfluoroalkyl)fluoroiridium(III) and (Perfluoroalkyl)methyliridium(III) Compounds. Organometallics, 2006, 25, 3474-3480.                                                                                                        | 2.3        | 28                  |
| 81 | Spectroscopic studies of CSA-doped poly[C-hydroxyl-(4-N-dimethylamino)phenyl]dithienylmethine and doping effects on ionic conductivity. Synthetic Metals, 2006, 156, 482-487.                                                                                                  | 3.9        | 3                   |
| 82 | Functionalization of multi-walled carbon nanotubes: Direct proof of sidewall thiolation. Physica<br>Status Solidi (B): Basic Research, 2006, 243, 3221-3225.                                                                                                                   | 1.5        | 35                  |
| 83 | Thiolation of carbon nanotubes and sidewall functionalization. Journal of Materials Research, 2006, 21, 1012-1018.                                                                                                                                                             | 2.6        | 37                  |
| 84 | Tethering Carbon Nanotubes. AIP Conference Proceedings, 2005, , .                                                                                                                                                                                                              | 0.4        | 0                   |
| 85 | New Polymer Nanotube Design from Graft Polymerization. AIP Conference Proceedings, 2005, , .                                                                                                                                                                                   | 0.4        | 0                   |
| 86 | Carbonâ^'Fluorine Bond Activation Coupled with Carbonâ^'Hydrogen Bond Formation α to Iridium:<br>Kinetics, Mechanism, and Diastereoselectivity. Journal of the American Chemical Society, 2005, 127,<br>15585-15594.                                                           | 13.7       | 41                  |
| 87 | Catalytic Polymerization of a Cyclic Ester Derived from a "Cool―Natural Precursor.<br>Biomacromolecules, 2005, 6, 2091-2095.                                                                                                                                                   | 5.4        | 96                  |
| 88 | Isotactic Polymers with Alternating Lactic Acid and Oxetane Subunits from the Endoentropic Polymerization of a 14-Membered Ring. Macromolecules, 2004, 37, 5274-5281.                                                                                                          | 4.8        | 24                  |
| 89 | Conformational Analysis and Assignments of Relative Stereocenter Configurations in<br>Fluoroalkylâ~'Iridium Complexes Using19F{1H} HOESY Experiments. Comparison with Solid-State X-ray<br>Structural Results. Journal of the American Chemical Society, 2004, 126, 6169-6178. | 13.7       | 27                  |
| 90 | A New Synthetic Route to Poly[3-hydroxypropionic acid] (P[3-HP]):Â Ring-Opening Polymerization of 3-HP<br>Macrocyclic Esters. Macromolecules, 2004, 37, 8198-8200.                                                                                                             | 4.8        | 55                  |

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Selective Protonation at a Câ^'F Bond in the Presence of an Iridiumâ^'Methyl Bond Gives<br>Diastereoselective Carbonâ ''Fluorine Bond Activation and Carbonâ ''Carbon Bond Formation. A New<br>Path to Carbon Stereocenters Bearing Fluorine Atoms. Organometallics, 2002, 21, 4902-4904. | 2.3 | 28        |
| 92 | Carbonâ^'Fluorine Bond Hydrogenolysis in Perfluoroethylâ^'Iridium Complexes To Give HFC-134a Involves<br>Heterolytic Activation of H2. Organometallics, 2002, 21, 3085-3087.                                                                                                              | 2.3 | 38        |
| 93 | Water, water, everywhere.†Synthesis and structures of perfluoroalkyl rhodium and iridium(III)<br>compounds containing water ligands. Dalton Transactions RSC, 2001, , 2270-2278.                                                                                                          | 2.3 | 30        |
| 94 | Unusual Reactivity of "Proton Sponge―as a Hydride Donor to Transition Metals: Synthesis and<br>Structural Characterization of Fluoroalkyl(hydrido) Complexes of Iridium(III) and Rhodium(III).<br>Organometallics, 2001, 20, 3190-3197.                                                   | 2.3 | 50        |