
## David Edmund Szymkowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6670968/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Inhibition of B cell activation following in vivo co-engagement of B cell antigen receptor and FcÎ <sup>3</sup><br>receptor IIb in non-autoimmune-prone and SLE-prone mice. Journal of Translational Autoimmunity,<br>2021, 4, 100075.                      | 4.0 | 9         |
| 2  | Accelerated Clearance and Degradation of Cell-Free HIV by Neutralizing Antibodies Occurs via FcγRIIb<br>on Liver Sinusoidal Endothelial Cells by Endocytosis. Journal of Immunology, 2021, 206, 1284-1296.                                                  | 0.8 | 6         |
| 3  | Topical Administration of a Soluble TNF Inhibitor Reduces Infarct Volume After Focal Cerebral<br>Ischemia in Mice. Frontiers in Neuroscience, 2019, 13, 781.                                                                                                | 2.8 | 25        |
| 4  | Inhibition of TNF reduces mechanical orofacial hyperalgesia induced by Complete Freund's Adjuvant by<br>a TRPV1-dependent mechanism in mice. Pharmacological Reports, 2017, 69, 1380-1385.                                                                  | 3.3 | 11        |
| 5  | Trypanosoma brucei growth control by TNF in mammalian host is independent of the soluble form of the cytokine. Scientific Reports, 2017, 7, 6165.                                                                                                           | 3.3 | 8         |
| 6  | Therapeutic inhibition of soluble brain TNF promotes remyelination by increasing myelin phagocytosis by microglia. JCI Insight, 2017, 2, .                                                                                                                  | 5.0 | 72        |
| 7  | Hippocampal TNFα Signaling Contributes to Seizure Generation in an Infection-Induced Mouse Model of<br>Limbic Epilepsy. ENeuro, 2017, 4, ENEURO.0105-17.2017.                                                                                               | 1.9 | 88        |
| 8  | Harnessing Fc receptor biology in the design of therapeutic antibodies. Current Opinion in<br>Immunology, 2016, 40, 78-87.                                                                                                                                  | 5.5 | 59        |
| 9  | Oligodendroglial TNFR2 Mediates Membrane TNF-Dependent Repair in Experimental Autoimmune<br>Encephalomyelitis by Promoting Oligodendrocyte Differentiation and Remyelination. Journal of<br>Neuroscience, 2016, 36, 5128-5143.                              | 3.6 | 113       |
| 10 | Transmembrane TNF″± is sufficient for articular inflammation and hypernociception in a mouse model of gout. European Journal of Immunology, 2016, 46, 204-211.                                                                                              | 2.9 | 67        |
| 11 | Tuning T Cell Affinity Improves Efficacy and Safety of Anti-CD38 × Anti-CD3 Bispecific Antibodies in<br>Monkeys - a Potential Therapy for Multiple Myeloma. Blood, 2015, 126, 1798-1798.                                                                    | 1.4 | 26        |
| 12 | Suppression of innate and adaptive B cell activation pathways by antibody coengagement of FcγRIIb and CD19. MAbs, 2014, 6, 991-999.                                                                                                                         | 5.2 | 28        |
| 13 | Central but not systemic administration of XPro1595 is therapeutic following moderate spinal cord injury in mice. Journal of Neuroinflammation, 2014, 11, 159.                                                                                              | 7.2 | 62        |
| 14 | Systemically administered anti-TNF therapy ameliorates functional outcomes after focal cerebral ischemia. Journal of Neuroinflammation, 2014, 11, 203.                                                                                                      | 7.2 | 79        |
| 15 | Suppression of Rheumatoid Arthritis B Cells by XmAb5871, an Antiâ€CD19 Antibody That Coengages B Cell<br>Antigen Receptor Complex and Fcγ Receptor IIb Inhibitory Receptor. Arthritis and Rheumatology, 2014,<br>66, 1153-1164.                             | 5.6 | 51        |
| 16 | Central but not peripheral administration of XPro1595 is therapeutic following moderate spinal cord injury in mice. Journal of Neuroimmunology, 2014, 275, 114-115.                                                                                         | 2.3 | 0         |
| 17 | Altered Expression of Oligodendrocyte and Neuronal Marker Genes Predicts the Clinical Onset of<br>Autoimmune Encephalomyelitis and Indicates the Effectiveness of Multiple Sclerosis–Directed<br>Therapeutics. Journal of Immunology, 2014, 192, 4122-4133. | 0.8 | 18        |
| 18 | A1.84â€Switching off B cells by Fc-engineered anti-CD19 antibody (XmAb5871). Annals of the Rheumatic Diseases, 2014, 73, A37.1-A37.                                                                                                                         | 0.9 | 0         |

| #  | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Immunotherapy with Long-Lived Anti-CD123 × Anti-CD3 Bispecific Antibodies Stimulates Potent T<br>Cell-Mediated Killing of Human AML Cell Lines and of CD123+ Cells in Monkeys: A Potential Therapy for<br>Acute Myelogenous Leukemia. Blood, 2014, 124, 2316-2316.                                   | 1.4 | 27        |
| 20 | Immunotherapy with Long-Lived Anti-CD20 × Anti-CD3 Bispecific Antibodies Stimulates Potent T<br>Cell-Mediated Killing of Human B Cell Lines and of Circulating and Lymphoid B Cells in Monkeys: A<br>Potential Therapy for B Cell Lymphomas and Leukemias. Blood, 2014, 124, 3111-3111.              | 1.4 | 12        |
| 21 | Immunotherapy with Long-Lived Anti-CD38 × Anti-CD3 Bispecific Antibodies Stimulates Potent T<br>Cell-Mediated Killing of Human Myeloma Cell Lines and CD38+ Cells in Monkeys: A Potential Therapy<br>for Multiple Myeloma. Blood, 2014, 124, 4727-4727.                                              | 1.4 | 14        |
| 22 | Neutralization of Membrane TNF, but Not Soluble TNF, Is Crucial for the Treatment of Experimental Colitis. Inflammatory Bowel Diseases, 2013, 19, 246-253.                                                                                                                                           | 1.9 | 56        |
| 23 | Immune suppression in cynomolgus monkeys by XPro9523. MAbs, 2013, 5, 384-396.                                                                                                                                                                                                                        | 5.2 | 23        |
| 24 | Suppression of mast cell degranulation through a dual-targeting tandem IgE–IgG Fc domain biologic<br>engineered to bind with high affinity to Fcl̂3RIIb. Immunology Letters, 2012, 143, 34-43.                                                                                                       | 2.5 | 28        |
| 25 | Reduction of total IgE by targeted coengagement of IgE B-cell receptor and FcÎ <sup>3</sup> RIIb with Fc-engineered antibody. Journal of Allergy and Clinical Immunology, 2012, 129, 1102-1115.                                                                                                      | 2.9 | 81        |
| 26 | Tumour necrosis factor-mediated macrophage activation in the target organ is critical for clinical manifestation of uveitis. Clinical and Experimental Immunology, 2012, 168, 165-177.                                                                                                               | 2.6 | 25        |
| 27 | Inhibition of Soluble Tumor Necrosis Factor Ameliorates Synaptic Alterations and Ca2+ Dysregulation in Aged Rats. PLoS ONE, 2012, 7, e38170.                                                                                                                                                         | 2.5 | 47        |
| 28 | Suppression Of IgE Production By XmAb7195, An Fc-Engineered Antibody That Specifically Coengages<br>Inhibitory Receptor Fc?RIIb With IgE-BCR. , 2011, , .                                                                                                                                            |     | 0         |
| 29 | Transmembrane tumour necrosis factor is neuroprotective and regulates experimental autoimmune<br>encephalomyelitis via neuronal nuclear factor-lºB. Brain, 2011, 134, 2722-2735.                                                                                                                     | 7.6 | 85        |
| 30 | Allergic Lung Inflammation Is Mediated by Soluble Tumor Necrosis Factor (TNF) and Attenuated by<br>Dominant-Negative TNF Biologics. American Journal of Respiratory Cell and Molecular Biology, 2011,<br>45, 731-739.                                                                                | 2.9 | 25        |
| 31 | Antibody-Mediated Coengagement of FcγRIIb and B Cell Receptor Complex Suppresses Humoral Immunity<br>in Systemic Lupus Erythematosus. Journal of Immunology, 2011, 186, 4223-4233.                                                                                                                   | 0.8 | 142       |
| 32 | Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. Brain, 2011, 134, 2736-2754.                                                                                                              | 7.6 | 174       |
| 33 | Roles of Soluble and Membrane TNF and Related Ligands in Mycobacterial Infections: Effects of<br>Selective and Non-selective TNF Inhibitors During Infection. Advances in Experimental Medicine and<br>Biology, 2011, 691, 187-201.                                                                  | 1.6 | 29        |
| 34 | Virally infected and matured human dendritic cells activate natural killer cells via cooperative activity of plasma membrane-bound TNF and IL-15. Blood, 2010, 116, 575-583.                                                                                                                         | 1.4 | 63        |
| 35 | Soluble TNF, but not membrane TNF, is critical in LPS-induced hepatitis. Journal of Hepatology, 2010, 53, 1059-1068.                                                                                                                                                                                 | 3.7 | 56        |
| 36 | Dominantâ€Negative Tumor Necrosis Factor Protects from <i>Mycobacterium bovis</i> Bacillus<br>Calmetteâ€GuA©rin (BCG) and Endotoxinâ€Induced Liver Injury without Compromising Host Immunity to BCG<br>and <i>Mycobacterium tuberculosis</i> . Journal of Infectious Diseases, 2009, 199, 1053-1063. | 4.0 | 48        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcγRIIb with Fc-engineered antibodies. Molecular Immunology, 2008, 45, 3926-3933.                                              | 2.2  | 128       |
| 38 | Dominant-Negative Inhibitors of Soluble TNF Attenuate Experimental Arthritis without Suppressing<br>Innate Immunity to Infection. Journal of Immunology, 2007, 179, 1872-1883.                                                        | 0.8  | 148       |
| 39 | Soluble TNF Mediates the Transition from Pulmonary Inflammation to Fibrosis. PLoS ONE, 2006, 1, e108.                                                                                                                                 | 2.5  | 116       |
| 40 | Blocking Soluble Tumor Necrosis Factor Signaling with Dominant-Negative Tumor Necrosis Factor<br>Inhibitor Attenuates Loss of Dopaminergic Neurons in Models of Parkinson's Disease. Journal of<br>Neuroscience, 2006, 26, 9365-9375. | 3.6  | 331       |
| 41 | Timely lessons for target-based discovery of anti-inflammatory drugs. Drug Discovery Today, 2005, 10, 14-17.                                                                                                                          | 6.4  | 1         |
| 42 | Creating the next generation of protein therapeutics through rational drug design. Current Opinion in Drug Discovery & Development, 2005, 8, 590-600.                                                                                 | 1.9  | 21        |
| 43 | Rational optimization of proteins as drugs: a new era of ?medicinal biology?. Drug Discovery Today, 2004, 9, 381-383.                                                                                                                 | 6.4  | 6         |
| 44 | Target validation joins the pharma fold. Targets, 2003, 2, 8-9.                                                                                                                                                                       | 0.3  | 4         |
| 45 | Inactivation of TNF Signaling by Rationally Designed Dominant-Negative TNF Variants. Science, 2003, 301, 1895-1898.                                                                                                                   | 12.6 | 222       |
| 46 | Phorbol 12-Myristate 13-Acetate Up-regulates the Transcription of MUC2Intestinal Mucin via Ras, ERK, and NF-κB. Journal of Biological Chemistry, 2002, 277, 32624-32631.                                                              | 3.4  | 93        |
| 47 | MUC17, a Novel Membrane-Tethered Mucin. Biochemical and Biophysical Research Communications, 2002, 291, 466-475.                                                                                                                      | 2.1  | 187       |
| 48 | Too many targets, not enough target validation. Drug Discovery Today, 2001, 6, 397.                                                                                                                                                   | 6.4  | 11        |
| 49 | Non-specific antiviral activity of antisense molecules targeted to the E1 region of human papillomavirus. Antiviral Research, 2000, 48, 187-196.                                                                                      | 4.1  | 27        |
| 50 | Cloning of the Amino-terminal and 5′-Flanking Region of the Human MUC5AC Mucin Gene and<br>Transcriptional Up-regulation by Bacterial Exoproducts. Journal of Biological Chemistry, 1998, 273,<br>6812-6820.                          | 3.4  | 160       |
| 51 | Developing antisense oligonucleotides from the laboratory to clinical trials. Drug Discovery Today, 1996, 1, 415-428.                                                                                                                 | 6.4  | 51        |
| 52 | Hypersensitivity to Cisplatin in Mouse Leukemia L1210/0 Cells: An XPG DNA Repair Defect. , 1996, , 317-326.                                                                                                                           |      | 0         |
| 53 | An XPG DNA repair defect causing mutagen hypersensitivity in mouse leukemia L1210 cells. Molecular<br>and Cellular Biology, 1995, 15, 290-297.                                                                                        | 2.3  | 28        |
| 54 | Electron Microscopy of DNA Excision Repair Patches Produced by Human Cell Extracts. Journal of<br>Molecular Biology, 1993, 231, 251-260.                                                                                              | 4.2  | 16        |

| #  | Article                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Identification and characterization of aDictyostelium discoideumribosomal protein gene. Nucleic<br>Acids Research, 1990, 18, 4695-4701.           | 14.5 | 17        |
| 56 | ADictyostelium discoideumcDNA coding for a protein with homology to the rat ribosomal protein L7.<br>Nucleic Acids Research, 1989, 17, 5393-5393. | 14.5 | 15        |