Defeng Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6670955/publications.pdf

Version: 2024-02-01

66343 95266 5,306 127 42 68 citations h-index g-index papers 127 127 127 4312 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Insight into the role of free volume in irradiation resistance to discoloration of lead ontaining plexiglass. Journal of Applied Polymer Science, 2022, 139, 51545.	2.6	4
2	Water-in-water Pickering emulsions stabilized by the starch nanocrystals with various surface modifications. Journal of Colloid and Interface Science, 2022, 607, 1613-1624.	9.4	20
3	Nucleation roles of cellulose nanocrystals and chitin nanocrystals in poly(ε-caprolactone) nanocomposites. International Journal of Biological Macromolecules, 2022, 205, 587-594.	7. 5	14
4	Mapping hierarchical networks of poly(vinyl alcohol)/cellulose nanofiber composite hydrogels via viscoelastic probes. Carbohydrate Polymers, 2022, 288, 119372.	10.2	11
5	Hierarchical networks of anisotropic hydrogels based on cross-linked Poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Ove	rlogk ₈ 10 Tf	⁵ 50 ₈ 582 Td (a
6	Insight into different roles of chitin nanocrystals and cellulose nanocrystals towards stabilizing Pickering emulsions. Food Hydrocolloids, 2022, 131, 107808.	10.7	14
7	Synthesis and Photoluminescence Mechanism of Multicolored Nitrogen-Doped Carbon Nanodots and Their Application in Polymer Self-Assemblies. ACS Applied Polymer Materials, 2022, 4, 4784-4795.	4.4	5
8	Pickering emulsion stabilized with fibrous nanocelluloses: Insight into fiber flexibility-emulsifying capacity relations. Carbohydrate Polymers, 2021, 255, 117483.	10.2	64
9	Surface chain engineering of chitin nanocrystals towards tailoring the nucleating capacities for poly (\hat{l}^2 -hydroxybutyrate). International Journal of Biological Macromolecules, 2021, 166, 967-976.	7.5	13
10	Functional biopolyesters based on cross-linked Poly(-malic acid): Network engineering towards tailoring brittle-ductile transition and shape-memory performance. Polymer, 2021, 221, 123628.	3.8	6
11	Regulating Asynchronous Deformations of Biopolyester Elastomers via Photoprogramming and Strain-Induced Crystallization. Macromolecules, 2021, 54, 5694-5704.	4.8	17
12	Cellulosic nanofibers filled poly(\hat{l}^2 -hydroxybutyrate): Relations between viscoelasticity of composites and aspect ratios of nanofibers. Carbohydrate Polymers, 2021, 265, 118093.	10.2	16
13	Insight into melting point depression of polylactide nanocomposites with acetylated chitin nanocrystals. Carbohydrate Polymers, 2021, 273, 118594.	10.2	8
14	Probing the effect of straight chain fatty acids on the properties of lead-containing plexiglass. Reaction Chemistry and Engineering, 2021, 6, 1628-1634.	3.7	4
15	Stereocomplex-Induced Self-Assembly of PLLA-PEG-PLLA and PDLA-PEG-PDLA Triblock Copolymers in an Aqueous System. ACS Applied Polymer Materials, 2021, 3, 6078-6089.	4.4	8
16	Selective localization of starch nanocrystals in the biodegradable nanocomposites probed by crystallization temperatures. Carbohydrate Polymers, 2020, 227, 115341.	10.2	22
17	Viscoelasticity of olive oil/water Pickering emulsions stabilized with starch nanocrystals. Carbohydrate Polymers, 2020, 230, 115575.	10.2	46

Tuning Degradation and Mechanical Properties of Poly(l-lactic acid) with Biomass-Derived Poly(l-malic) Tj ETQq0 0 0.5gBT /Overlock 10 T

#	Article	IF	CITATIONS
19	Cellulose nanofibers reinforced biodegradable polyester blends: Ternary biocomposites with balanced mechanical properties. Carbohydrate Polymers, 2020, 233, 115845.	10.2	25
20	Rheological properties of magnetorheological suspensions stabilized with nanocelluloses. Carbohydrate Polymers, 2020, 231, 115776.	10.2	31
21	Robust Self-Healing Magnetically Induced Colloidal Photonic Crystal Hydrogels. ACS Applied Polymer Materials, 2020, 2, 448-454.	4.4	13
22	Photothermal Stimuli-Responsive Biocomposites Based on Cross-Linked Poly(<scp>l</scp> -malic acid) Reinforced with Carbon Nanotubes. ACS Applied Polymer Materials, 2020, 2, 5889-5897.	4.4	10
23	Programmable and sophisticated shape-memory behavior <i>via</i> tailoring spatial distribution of polymer crosslinks. Journal of Materials Chemistry A, 2020, 8, 17193-17201.	10.3	12
24	Selectively Sensing Capacities of Biocompatible Shape Memory Materials Based on Cross-Linked Poly(<scp>I</scp> -malic acid): Visual Discrimination of the Solvents with Similar Structures. ACS Applied Polymer Materials, 2020, 2, 1672-1681.	4.4	13
25	Functionalized cellulose nanocrystals as the performance regulators of poly(β-hydroxybutyrate-co-valerate) biocomposites. Carbohydrate Polymers, 2020, 242, 116399.	10.2	16
26	Starch nanocrystals as the particle emulsifier to stabilize caprylic/capric triglycerides-in-water emulsions. Carbohydrate Polymers, 2020, 245, 116561.	10.2	15
27	Specific purification of a single protein from a cell broth mixture using molecularly imprinted membranes for the biopharmaceutical industry. RSC Advances, 2019, 9, 23425-23434.	3.6	6
28	Green and biomass-derived materials with controllable shape memory transition temperatures based on cross-linked Poly(-malic acid). Polymer, 2019, 180, 121733.	3.8	18
29	Rheology of the sesame oil-in-water emulsions stabilized by cellulose nanofibers. Food Hydrocolloids, 2019, 94, 114-127.	10.7	71
30	Nanopolysaccharides-Based Green Additives. Springer Series in Biomaterials Science and Engineering, 2019, , 367-388.	1.0	0
31	Rheology of the cellulose nanocrystals filled poly(Îμ-caprolactone) biocomposites. Polymer, 2018, 140, 167-178.	3.8	39
32	Crystallization of Green Poly(ε-caprolactone) Nanocomposites with Starch Nanocrystal: The Nucleation Role Switching of Starch Nanocrystal with Its Surface Acetylation. Industrial & Samp; Engineering Chemistry Research, 2018, 57, 6257-6264.	3.7	18
33	Cyclic tensile properties of the polylactide nanocomposite foams containing cellulose nanocrystals. Cellulose, 2018, 25, 1795-1807.	4.9	35
34	The starch nanocrystal filled biodegradable poly($\hat{l}\mu$ -caprolactone) composite membrane with highly improved properties. Carbohydrate Polymers, 2018, 182, 115-122.	10.2	38
35	Selective localization of cellulose nanocrystals in the biodegradable poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Over 136-147.	lock 10 Tf 3.8	50 107 Td (a 27
36	Green poly(\hat{l}^2 -hydroxybutyrate)/starch nanocrystal composites: Tuning the nucleation and spherulite morphology through surface acetylation of starch nanocrystal. Carbohydrate Polymers, 2018, 195, 79-88.	10.2	21

#	Article	IF	CITATIONS
37	Rheological and mechanical properties of polylactide nanocomposites reinforced with the cellulose nanofibers with various surface treatments. Cellulose, 2018, 25, 3955-3971.	4.9	46
38	Thermoplastic polyester elastomer composites containing two types of filler particles with different dimensions: Structure design and mechanical property control. Composite Structures, 2018, 197, 21-27.	5.8	15
39	Polylactide/cellulose nanocrystal composites: a comparative study on cold and melt crystallization. Cellulose, 2017, 24, 2163-2175.	4.9	45
40	Nucleation Role of Basalt Fibers during Crystallization of Poly(ε-caprolactone) Composites. Industrial & Lamp; Engineering Chemistry Research, 2017, 56, 2746-2753.	3.7	14
41	Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly($\hat{1}^2$ -hydroxybutyrate) composites. Carbohydrate Polymers, 2017, 157, 1821-1829.	10.2	65
42	Morphology and mechanical properties of poly(\hat{l}^2 -hydroxybutyrate)/poly($\hat{l}\mu$ -caprolactone) blends controlled with cellulosic particles. Carbohydrate Polymers, 2017, 174, 217-225.	10.2	30
43	Polylactide/basalt fiber composites with tailorable mechanical properties: Effect of surface treatment of fibers and annealing. Composite Structures, 2017, 176, 1020-1027.	5.8	59
44	New Way To Tailor Thermal Stability and Mechanical Properties of Thermoplastic Polyester Elastomer: Relations between Interfacial Structure and Surface Treatment of Spodumene Slag. Industrial & Engineering Chemistry Research, 2017, 56, 6239-6246.	3.7	12
45	Transcrystallization of polypropylene in the presence of polyester/cellulose nanocrystal composite fibers. Carbohydrate Polymers, 2017, 167, 105-114.	10.2	26
46	Crystallization Temperature as the Probe To Detect Polymer–Filler Compatibility in the Poly(Îμ-caprolactone) Composites with Acetylated Cellulose Nanocrystal. Journal of Physical Chemistry C, 2017, 121, 18615-18624.	3.1	33
47	The role of nanocrystalline cellulose during crystallization of poly($\hat{l}\mu$ -caprolactone) composites: Nucleation agent or not?. Composites Part A: Applied Science and Manufacturing, 2017, 92, 17-26.	7.6	51
48	Rheological properties of nanocrystalline cellulose suspensions. Carbohydrate Polymers, 2017, 157, 303-310.	10.2	58
49	Recycling of spodumene slag: preparation of green polymer composites. RSC Advances, 2016, 6, 36942-36953.	3.6	24
50	Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: A phase interface-property relation study. Carbohydrate Polymers, 2016, 146, 58-66.	10.2	73
51	Effects of ethyl cellulose on the crystallization and mechanical properties of poly (\hat{l}^2 -hydroxybutyrate). International Journal of Biological Macromolecules, 2016, 88, 120-129.	7. 5	30
52	Nucleation of a Thermoplastic Polyester Elastomer Controlled by Silica Nanoparticles. Industrial & Samp; Engineering Chemistry Research, 2016, 55, 5279-5286.	3.7	22
53	Crystallization of poly($\hat{l}\mu$ -caprolactone) in its immiscible blend with polylactide: insight into the role of annealing histories. RSC Advances, 2016, 6, 37721-37730.	3.6	40
54	Mechanical properties of thermoplastic polyester elastomer controlled by blending with poly(butylene terephthalate). Polymer Testing, 2016, 55, 152-159.	4.8	29

#	Article	IF	Citations
55	Thermoplastic polyester elastomer nanocomposites filled with graphene: Mechanical and viscoelastic properties. Composites Science and Technology, 2016, 132, 108-115.	7.8	47
56	Viscoelastic behavior and model simulations of poly(butylene adipate- <i>co</i> terephthalate) biocomposites with carbon nanotubes: Hierarchical structures and relaxation. Journal of Composite Materials, 2016, 50, 1805-1816.	2.4	8
57	Crystallization of Poly(ϵ-caprolactone) composites with graphite nanoplatelets: Relations between nucleation and platelet thickness. Thermochimica Acta, 2015, 612, 25-33.	2.7	35
58	Insights into the nucleation role of cellulose crystals during crystallization of poly(\hat{l}^2) Tj ETQq0 0 0 rgBT /Overloading	ck 10 Tf 50 10.2) 622 Td (-hy
59	Percolation networks and transient rheology of polylactide composites containing graphite nanosheets with various thicknesses. Polymer, 2015, 67, 216-226.	3.8	52
60	Polylactide composite foams containing carbon nanotubes and carbon black: Synergistic effect of filler on electrical conductivity. Carbon, 2015, 95, 380-387.	10.3	110
61	Mechanical properties and creep behavior of poly(trimethylene terephthalate)/mesoporous silica composites. Polymer Composites, 2015, 36, 1386-1393.	4.6	4
62	Morphological control of porous ethylene-vinyl acetate copolymer membrane obtained from a co-continuous ethylene-vinyl acetate copolymer/poly(ϵ-caprolactone) blend. Polymer International, 2014, 63, 470-478.	3.1	5
63	Green Poly(Îμ-caprolactone) Composites Reinforced with Electrospun Polylactide/Poly(Îμ-caprolactone) Blend Fiber Mats. ACS Sustainable Chemistry and Engineering, 2014, 2, 2102-2110.	6.7	46
64	Poly(trimethylene terephthalate)/Poly(butylenes succinate) blend: Phase behavior and mechanical property control using its transesterification system as the compatibilizer. Materials Chemistry and Physics, 2014, 148, 554-561.	4.0	11
65	Crystallization and creep of the graphite nanosheets based poly(butylene adipate-co-terephthalate) biocomposites. Thermochimica Acta, 2014, 587, 72-80.	2.7	35
66	Molecular dynamics and crystallization precursors in polylactide and poly(lactide)/CNT biocomposites in the insulating state. European Polymer Journal, 2013, 49, 4008-4019.	5.4	20
67	Effect of coldâ€crystallization on the AC and DC conductive properties of polylactide biocomposites with carboxylic or neat large aspect ratio MWCNT. Polymer Composites, 2013, 34, 67-76.	4.6	9
68	Crystallization behavior of poly(trimethylene terephthalate)/mesoporous silica SBA-15 composites prepared by in situ polymerization. Thermochimica Acta, 2013, 565, 72-81.	2.7	11
69	Creep behavior of polyurethane nanocomposites with carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2013, 50, 65-72.	7.6	108
70	Crystallization Behavior of Polylactide/Graphene Composites. Industrial & Engineering Chemistry Research, 2013, 52, 6731-6739.	3.7	153
71	Rheological and electrical properties of carbon blackâ€based poly(vinylidene fluoride) composites. Polymer Engineering and Science, 2013, 53, 2541-2548.	3.1	11
72	Interfacial Properties, Viscoelasticity, and Thermal Behaviors of Poly(butylene succinate)/Polylactide Blend. Industrial & Description (2012, 51, 2290-2298).	3.7	136

#	Article	IF	CITATIONS
73	Poly(vinylidene fluoride) reinforced by carbon fibers: Structural parameters of fibers and fiber-polymer adhesion. Applied Surface Science, 2012, 258, 9570-9578.	6.1	14
74	Rheology of Carbon Nanotubes–Filled Poly(vinylidene fluoride) Composites. Industrial & Engineering Chemistry Research, 2012, 51, 6705-6713.	3.7	44
7 5	Fabrication of Polylactide/Poly(ε-caprolactone) Blend Fibers by Electrospinning: Morphology and Orientation. Industrial & Engineering Chemistry Research, 2012, 51, 3682-3691.	3.7	63
76	EFFECT OF CARBON NANOTUBES ON TRANSESTERIFICATION IN MISCIBLE POLYESTER BLENDS. Acta Polymerica Sinica, 2012, 011, 1425-1432.	0.0	0
77	Rheological Percolation Behavior and Isothermal Crystallization of Poly(butyene Succinte)/Carbon Nanotube Composites. Industrial & Engineering Chemistry Research, 2011, 50, 14186-14192.	3.7	31
78	Effect of epoxy resin on the thermal behaviors and viscoelastic properties of poly(phenylene sulfide). Materials Chemistry and Physics, 2011, 128, 274-282.	4.0	25
79	The co-continuous morphology of biocompatible ethylene-vinyl acetate copolymers/poly(ε-caprolactone) blend: effect of viscosity ratio and vinyl acetate content. Colloid and Polymer Science, 2011, 289, 1683-1694.	2.1	18
80	Electrospinning of polylactide and its composites with carbon nanotubes. Polymer Composites, 2011, 32, 1280-1288.	4.6	46
81	Banded spherulites of electrospun poly(trimethylene terephthalate)/carbon nanotube composite mats. Polymer International, 2011, 60, 1497-1503.	3.1	20
82	Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 2011, 212, 613-626.	2.2	218
83	Selective Localization Behavior of Carbon Nanotubes: Effect on Transesterification of Immiscible Polyester Blends. Macromolecular Chemistry and Physics, 2011, 212, 1700-1709.	2.2	45
84	Electrospinning of poly(trimethylene terephthalate)/carbon nanotube composites. European Polymer Journal, 2011, 47, 284-293.	5.4	55
85	SELECTIVE LOCALIZATION OF CARBON NANOTUBES IN IMMISCIBLE BLENDS OF POLY(TRIMETHYLENE) Tj ETQq1	1 0.78431 0.0	14 ₈ rgBT /Ove
86	MORPHOLOGY AND VISCOELASTIC BEHAVIOR OF POLYLACTIDE/ETHYLENE-VINYL ACETATE COPOLYMER BLENDS. Acta Polymerica Sinica, 2011, 011, 139-144.	0.0	4
87	Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 479-489.	2.1	150
88	Viscoelastic interfacial properties of compatibilized poly(εâ€caprolactone)/polylactide blend. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 756-765.	2.1	89
89	Crystallization and biodegradation of polylactide/carbon nanotube composites. Polymer Engineering and Science, 2010, 50, 1721-1733.	3.1	91
90	Nucleation Effect of Thermotropic Liquid Crystalline Polymer on the Crystallization of Poly($\hat{l}\mu$ -Caprolactone). Polymers and Polymer Composites, 2010, 18, 91-101.	1.9	0

#	Article	IF	CITATIONS
91	Degradation induced by nanostructural evolution of polylactide/clay nanocomposites in the isothermal cold crystallization process. Polymer International, 2009, 58, 430-436.	3.1	16
92	Study on physical properties of multiwalled carbon nanotube/poly(phenylene sulfide) composites. Polymer Engineering and Science, 2009, 49, 1727-1735.	3.1	49
93	Effect of steady shear on the morphology of biodegradable poly(ϵâ€caprolactone)/polylactide blend. Polymer Engineering and Science, 2009, 49, 2293-2300.	3.1	28
94	Kinetics study on melt compounding of carbon nanotube/polypropylene nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 608-618.	2.1	55
95	Selective Localization of Multiwalled Carbon Nanotubes in Poly(Îμ-caprolactone)/Polylactide Blend. Biomacromolecules, 2009, 10, 417-424.	5.4	345
96	EFFECT OF COMPATIBILIZER ON STRUCTURAL RHEOLOGY OF PP/PET BLENDS. Acta Polymerica Sinica, 2009, 007, 609-614.	0.0	0
97	Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polymer Degradation and Stability, 2008, 93, 1577-1584.	5.8	221
98	Poly(phenylene sulfide) magnetic composites. I. Relations of percolation between rheology, electrical, and magnetic properties. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 233-243.	2.1	17
99	Poly(phenylene sulfide)/lowâ€meltingâ€point metal composites. I. Transient viscoelastic properties and crystallization kinetics. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 677-690.	2.1	8
100	Morphology evolution of nanocomposites based on poly(phenylene sulfide)/poly(butylene) Tj ETQq0 0 0 rgBT /O	verlock 10 2.1) Tf 50 382 To
101	Poly(phenylene sulfide) magnetic composites. II. Crystallization, thermal, and viscoelastic properties. Polymer Engineering and Science, 2008, 48, 966-975.	3.1	16
102	Crystallization and thermal behavior of multiwalled carbon nanotube/poly(butylenes terephthalate) composites. Polymer Engineering and Science, 2008, 48, 1057-1067.	3.1	53
103	Linear viscoelastic properties and crystallization behavior of multiâ€walled carbon nanotube/polypropylene composites. Journal of Applied Polymer Science, 2008, 108, 1506-1513.	2.6	47
104	Viscoelastic properties of polyarylene ether nitriles/thermotropic liquid crystalline polymer blend. Journal of Applied Polymer Science, 2008, 108, 1934-1941.	2.6	8
105	Phase behavior and its viscoelastic response of polylactide/poly(Îμ-caprolactone) blend. European Polymer Journal, 2008, 44, 2171-2183.	5.4	194
106	Comparison Between Isothermal Cold and Melt Crystallization of Polylactide/Clay Nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1658-1668.	0.9	24
107	Comparison Between Isothermal Cold and Melt Crystallization of Polylactide/Clay Nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1658-1668.	0.9	9
108	Comparison between isothermal cold and melt crystallization of polylactide/clay nanocomposites. Journal of Nanoscience and Nanotechnology, 2008, 8, 1658-68.	0.9	2

#	Article	IF	CITATIONS
109	Morphology, nonisothermal crystallization behavior, and kinetics of poly(phenylene) Tj ETQq1 1 0.784314 rgBT	/Overlock 2.6	10 ₂₂ 50 742
110	Effect of steady shear on the microstructural evolution of melt-intercalated polymer/clay nanocomposites. Journal of Applied Polymer Science, 2007, 105, 1740-1748.	2.6	4
111	Effect of epoxy resin on rheology of polycarbonate/clay nanocomposites. European Polymer Journal, 2007, 43, 1635-1644.	5.4	43
112	Rheology of isothermally crystallized poly(butylene terephthalate) nanocomposites with clay loadings under the percolation threshold. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 229-238.	2.1	11
113	Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1100-1113.	2.1	187
114	Rheology of multiâ€walled carbon nanotube/poly(butylene terephthalate) composites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2239-2251.	2.1	108
115	Rheological properties and crystallization behavior of multiâ€walled carbon nanotube/poly(εâ€caprolactone) composites. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 3137-3147.	2.1	152
116	Rheology and thermal stability of polylactide/clay nanocomposites. Polymer Degradation and Stability, 2006, 91, 3149-3155.	5.8	125
117	Effect of blending sequence on the morphologies of poly(butylene terephthalate)/epoxy/clay nanocomposites by a rheological approach. Journal of Applied Polymer Science, 2006, 99, 340-346.	2.6	10
118	A rheological study on kinetics of poly(butylene terephthalate) melt intercalation. Journal of Applied Polymer Science, 2006, 99, 1865-1871.	2.6	7
119	Nonisothermal crystallization kinetics of poly(butylene terephthalate)/montmorillonite nanocomposites. Journal of Applied Polymer Science, 2006, 99, 3257-3265.	2.6	59
120	Effect of clay on immiscible morphology of poly(butylene terephthalate)/polyethylene blend nanocomposites. Journal of Applied Polymer Science, 2006, 102, 3628-3633.	2.6	61
121	Linear rheological behaviour and thermal stability of poly(butylene terephthalate)/epoxy/clay ternary nanocomposites. Polymer Degradation and Stability, 2005, 87, 511-519.	5.8	43
122	Reaction kinetics study of asymmetric polymer–polymer interface. Polymer, 2005, 46, 8410-8415.	3.8	14
123	Study on rheological behaviour of poly(butylene terephthalate)/montmorillonite nanocomposites. European Polymer Journal, 2005, 41, 2199-2207.	5.4	79
124	Study on the reaction kinetics between PBT and epoxy by a novel rheological method. European Polymer Journal, 2005, 41, 2171-2175.	5.4	13
125	Effect of flocculated structure on rheology of poly(butylene terephthalate)/clay nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2807-2818.	2.1	47
126	Morphology, Crystalline Structure and Isothermal Crystallization Kinetics of Polybutylene Terephthalate/Montmorillonite Nanocomposites. Polymers and Polymer Composites, 2005, 13, 61-71.	1.9	23

Article IF Citations

Effect of Epoxy Resin on the Mechanical Properties and Melt Viscoelastic Behaviour of Poly(butylene) Tj ETQq1 1 0.7,84314 rgBT /Ove