Bowen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6670601/publications.pdf

Version: 2024-02-01

46 papers

4,874 citations

249298 26 h-index 286692 43 g-index

46 all docs

46 docs citations

46 times ranked

6238 citing authors

#	Article	IF	CITATIONS
1	Nanomedicine-Leveraged Intratumoral Coordination and Redox Reactions of Dopamine for Tumor-Specific Chemotherapy. CCS Chemistry, 2022, 4, 1499-1509.	4.6	16
2	Perovskite Solar Cells with Carbonâ€Based Electrodes – Quantification of Losses and Strategies to Overcome Them. Advanced Energy Materials, 2022, 12, .	10.2	29
3	Enhancing Tumor Catalytic Therapy by Coâ€Catalysis. Angewandte Chemie, 2022, 134, .	1.6	11
4	Enhancing Tumor Catalytic Therapy by Coâ€Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
5	Molecularly Engineered Low-Cost Organic Hole-Transporting Materials for Perovskite Solar Cells: The Substituent Effect on Non-fused Three-Dimensional Systems. ACS Applied Energy Materials, 2022, 5, 3156-3165.	2.5	2
6	Hysteresisâ€Free Planar Perovskite Solar Module with 19.1% Efficiency by Interfacial Defects Passivation. Solar Rrl, 2022, 6, .	3.1	9
7	In Situ Synthesis of Natural Antioxidase Mimics for Catalytic Anti-Inflammatory Treatments: Rheumatoid Arthritis as an Example. Journal of the American Chemical Society, 2022, 144, 314-330.	6.6	46
8	An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nature Energy, 2022, 7, 107-115.	19.8	136
9	Inhibiting metal-inward diffusion-induced degradation through strong chemical coordination toward stable and efficient inverted perovskite solar cells. Energy and Environmental Science, 2022, 15, 2154-2163.	15.6	30
10	Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nature Communications, 2022, 13, 1988.	5.8	59
11	Reevaluation of Photoluminescence Intensity as an Indicator of Efficiency in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	19
12	When photoluminescence, electroluminescence, and open-circuit voltage diverge – light soaking and halide segregation in perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 13967-13978.	5.2	8
13	Interfacial <i>versus</i> Bulk Properties of Hole-Transporting Materials for Perovskite Solar Cells: Isomeric Triphenylamine-Based Enamines <i>versus</i> Spiro-OMeTAD. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21320-21330.	4.0	8
14	Intratumoral synthesis of nano-metalchelate for tumor catalytic therapy by ligand field-enhanced coordination. Nature Communications, 2021, 12, 3393.	5.8	57
15	Surface Reconstruction Engineering with Synergistic Effect of Mixedâ€Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2102902.	7.8	57
16	Defect Engineering of Mesoporous Silica Nanoparticles for Biomedical Applications. Accounts of Materials Research, 2021, 2, 581-593.	5.9	20
17	Passivation Strategies through Surface Reconstruction toward Highly Efficient and Stable Perovskite Solar Cells on n-i-p Architecture. Energies, 2021, 14, 4836.	1.6	13
18	Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3650-3660.	8.8	28

#	Article	IF	CITATIONS
19	Interfacial Passivation Engineering of Perovskite Solar Cells with Fill Factor over 82% and Outstanding Operational Stability on n-i-p Architecture. ACS Energy Letters, 2021, 6, 3916-3923.	8.8	115
20	Zinc Phthalocyanine Conjugated Dimers as Efficient Dopantâ€Free Hole Transporting Materials in Perovskite Solar Cells. ChemPhotoChem, 2020, 4, 307-314.	1.5	19
21	Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy and Environmental Science, 2020, 13, 5068-5079.	15.6	121
22	Chemistry of Advanced Nanomedicines in Cancer Cell Metabolism Regulation. Advanced Science, 2020, 7, 2001388.	5.6	20
23	Outstanding Passivation Effect by a Mixed-Salt Interlayer with Internal Interactions in Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3159-3167.	8.8	47
24	Low-temperature carbon-based electrodes in perovskite solar cells. Energy and Environmental Science, 2020, 13, 3880-3916.	15.6	149
25	Ascorbate Tumor Chemotherapy by An Iron-Engineered Nanomedicine-Catalyzed Tumor-Specific Pro-Oxidation. Journal of the American Chemical Society, 2020, 142, 21775-21785.	6.6	80
26	Tumorâ€Specific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angewandte Chemie - International Edition, 2020, 59, 9693-9701.	7.2	85
27	Revealing the Mechanism of Doping of <i>spiro</i> -MeOTAD via Zn Complexation in the Absence of Oxygen and Light. ACS Energy Letters, 2020, 5, 1271-1277.	8.8	29
28	Tumorâ€Specific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angewandte Chemie, 2020, 132, 9780-9788.	1.6	13
29	A Metalâ€Organic Framework (MOF) Fenton Nanoagentâ€Enabled Nanocatalytic Cancer Therapy in Synergy with Autophagy Inhibition. Advanced Materials, 2020, 32, e1907152.	11.1	220
30	Augmenting Tumorâ€Starvation Therapy by Cancer Cell Autophagy Inhibition. Advanced Science, 2020, 7, 1902847.	5.6	76
31	Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angewandte Chemie, 2020, 132, 22013-22022.	1.6	0
32	Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angewandte Chemie - International Edition, 2020, 59, 21829-21838.	7.2	38
33	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	11.1	396
34	Highly Stretchable, Adhesive, and Mechanical Zwitterionic Nanocomposite Hydrogel Biomimetic Skin. ACS Applied Materials & Distribution (1988) amp; Interfaces, 2019, 11, 40620-40628.	4.0	120
35	Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal–Mechanical Dual Sensors and Electroluminescent Devices. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16765-16775.	4.0	246
36	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519

#	Article	IF	CITATIONS
37	Exosome Biochemistry and Advanced Nanotechnology for Nextâ€Generation Theranostic Platforms. Advanced Materials, 2019, 31, e1802896.	11.1	234
38	Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105.	14.8	119
39	Inorganic Nanoshell-Stabilized Liquid Metal for Targeted Photonanomedicine in NIR-II Biowindow. Nano Letters, 2019, 19, 2128-2137.	4.5	127
40	"Stepwise Extraction―strategy-based injectable bioresponsive composite implant for cancer theranostics. Biomaterials, 2018, 166, 38-51.	5 . 7	26
41	2Dâ€Blackâ€Phosphorusâ€Reinforced 3Dâ€Printed Scaffolds:A Stepwise Countermeasure for Osteosarcoma. Advanced Materials, 2018, 30, 1705611.	11.1	284
42	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. CheM, 2018, 4, 1284-1313.	5.8	132
43	Exogenous/Endogenous‶riggered Mesoporous Silica Cancer Nanomedicine. Advanced Healthcare Materials, 2018, 7, e1800268.	3.9	48
44	Nanomedicine-Augmented Cancer-Localized Treatment by 3D Theranostic Implants. Journal of Biomedical Nanotechnology, 2017, 13, 871-890.	0.5	10
45	Interfacial Defects Passivation of High Efficiency Perovskite Solar Modules. , 0, , .		1
46	Interfacial Passivation Treatment towards High-efficiency and Operational Stable Perovskite Solar Cells. , 0, , .		1