Bowen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6670601/publications.pdf Version: 2024-02-01

ROWEN YANG

#	Article	IF	CITATIONS
1	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	47.7	1,519
2	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	21.0	396
3	2Dâ€Blackâ€Phosphorusâ€Reinforced 3Dâ€Printed Scaffolds:A Stepwise Countermeasure for Osteosarcoma. Advanced Materials, 2018, 30, 1705611.	21.0	284
4	Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal–Mechanical Dual Sensors and Electroluminescent Devices. ACS Applied Materials & Interfaces, 2019, 11, 16765-16775.	8.0	246
5	Exosome Biochemistry and Advanced Nanotechnology for Nextâ€Generation Theranostic Platforms. Advanced Materials, 2019, 31, e1802896.	21.0	234
6	A Metalâ€Organic Framework (MOF) Fenton Nanoagentâ€Enabled Nanocatalytic Cancer Therapy in Synergy with Autophagy Inhibition. Advanced Materials, 2020, 32, e1907152.	21.0	220
7	Low-temperature carbon-based electrodes in perovskite solar cells. Energy and Environmental Science, 2020, 13, 3880-3916.	30.8	149
8	An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nature Energy, 2022, 7, 107-115.	39.5	136
9	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. CheM, 2018, 4, 1284-1313.	11.7	132
10	Inorganic Nanoshell-Stabilized Liquid Metal for Targeted Photonanomedicine in NIR-II Biowindow. Nano Letters, 2019, 19, 2128-2137.	9.1	127
11	Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy and Environmental Science, 2020, 13, 5068-5079.	30.8	121
12	Highly Stretchable, Adhesive, and Mechanical Zwitterionic Nanocomposite Hydrogel Biomimetic Skin. ACS Applied Materials & Interfaces, 2019, 11, 40620-40628.	8.0	120
13	Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105.	31.8	119
14	Interfacial Passivation Engineering of Perovskite Solar Cells with Fill Factor over 82% and Outstanding Operational Stability on n-i-p Architecture. ACS Energy Letters, 2021, 6, 3916-3923.	17.4	115
15	Tumorâ€5pecific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angewandte Chemie - International Edition, 2020, 59, 9693-9701.	13.8	85
16	Ascorbate Tumor Chemotherapy by An Iron-Engineered Nanomedicine-Catalyzed Tumor-Specific Pro-Oxidation. Journal of the American Chemical Society, 2020, 142, 21775-21785.	13.7	80
17	Augmenting Tumor‣tarvation Therapy by Cancer Cell Autophagy Inhibition. Advanced Science, 2020, 7, 1902847.	11.2	76
18	Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nature Communications, 2022, 13, 1988.	12.8	59

BOWEN YANG

#	Article	IF	CITATIONS
19	Intratumoral synthesis of nano-metalchelate for tumor catalytic therapy by ligand field-enhanced coordination. Nature Communications, 2021, 12, 3393.	12.8	57
20	Surface Reconstruction Engineering with Synergistic Effect of Mixedâ€Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2102902.	14.9	57
21	Enhancing Tumor Catalytic Therapy by Co atalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	51
22	Exogenous/Endogenousâ€Triggered Mesoporous Silica Cancer Nanomedicine. Advanced Healthcare Materials, 2018, 7, e1800268.	7.6	48
23	Outstanding Passivation Effect by a Mixed-Salt Interlayer with Internal Interactions in Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3159-3167.	17.4	47
24	In Situ Synthesis of Natural Antioxidase Mimics for Catalytic Anti-Inflammatory Treatments: Rheumatoid Arthritis as an Example. Journal of the American Chemical Society, 2022, 144, 314-330.	13.7	46
25	Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angewandte Chemie - International Edition, 2020, 59, 21829-21838.	13.8	38
26	Inhibiting metal-inward diffusion-induced degradation through strong chemical coordination toward stable and efficient inverted perovskite solar cells. Energy and Environmental Science, 2022, 15, 2154-2163.	30.8	30
27	Revealing the Mechanism of Doping of <i>spiro</i> -MeOTAD via Zn Complexation in the Absence of Oxygen and Light. ACS Energy Letters, 2020, 5, 1271-1277.	17.4	29
28	Perovskite Solar Cells with Carbonâ€Based Electrodes – Quantification of Losses and Strategies to Overcome Them. Advanced Energy Materials, 2022, 12, .	19.5	29
29	Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3650-3660.	17.4	28
30	"Stepwise Extraction―strategy-based injectable bioresponsive composite implant for cancer theranostics. Biomaterials, 2018, 166, 38-51.	11.4	26
31	Chemistry of Advanced Nanomedicines in Cancer Cell Metabolism Regulation. Advanced Science, 2020, 7, 2001388.	11.2	20
32	Defect Engineering of Mesoporous Silica Nanoparticles for Biomedical Applications. Accounts of Materials Research, 2021, 2, 581-593.	11.7	20
33	Zinc Phthalocyanine Conjugated Dimers as Efficient Dopantâ€Free Hole Transporting Materials in Perovskite Solar Cells. ChemPhotoChem, 2020, 4, 307-314.	3.0	19
34	Reevaluation of Photoluminescence Intensity as an Indicator of Efficiency in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	19
35	Nanomedicine-Leveraged Intratumoral Coordination and Redox Reactions of Dopamine for Tumor-Specific Chemotherapy. CCS Chemistry, 2022, 4, 1499-1509.	7.8	16
36	Tumor‧pecific Chemotherapy by Nanomedicineâ€Enabled Differential Stress Sensitization. Angewandte Chemie, 2020, 132, 9780-9788.	2.0	13

BOWEN YANG

#	Article	IF	CITATIONS
37	Passivation Strategies through Surface Reconstruction toward Highly Efficient and Stable Perovskite Solar Cells on n-i-p Architecture. Energies, 2021, 14, 4836.	3.1	13
38	Enhancing Tumor Catalytic Therapy by Co atalysis. Angewandte Chemie, 2022, 134, .	2.0	11
39	Nanomedicine-Augmented Cancer-Localized Treatment by 3D Theranostic Implants. Journal of Biomedical Nanotechnology, 2017, 13, 871-890.	1.1	10
40	Hysteresisâ€Free Planar Perovskite Solar Module with 19.1% Efficiency by Interfacial Defects Passivation. Solar Rrl, 2022, 6, .	5.8	9
41	When photoluminescence, electroluminescence, and open-circuit voltage diverge – light soaking and halide segregation in perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 13967-13978.	10.3	8
42	Interfacial <i>versus</i> Bulk Properties of Hole-Transporting Materials for Perovskite Solar Cells: Isomeric Triphenylamine-Based Enamines <i>versus</i> Spiro-OMeTAD. ACS Applied Materials & Interfaces, 2021, 13, 21320-21330.	8.0	8
43	Molecularly Engineered Low-Cost Organic Hole-Transporting Materials for Perovskite Solar Cells: The Substituent Effect on Non-fused Three-Dimensional Systems. ACS Applied Energy Materials, 2022, 5, 3156-3165.	5.1	2
44	Interfacial Defects Passivation of High Efficiency Perovskite Solar Modules. , 0, , .		1
45	Interfacial Passivation Treatment towards High-efficiency and Operational Stable Perovskite Solar Cells. , 0, , .		1
46	Developing New Cancer Nanomedicines by Repurposing Old Drugs. Angewandte Chemie, 2020, 132, 22013-22022.	2.0	0