
Núria Morral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6669750/publications.pdf Version: 2024-02-01

ΝΔΩριλ Μορρλι

#	Article	IF	CITATIONS
1	Role of non-coding RNAs on liver metabolism and NAFLD pathogenesis. Human Molecular Genetics, 2022, 31, R4-R21.	2.9	6
2	Insights from a high-fat diet fed mouse model with a humanized liver. PLoS ONE, 2022, 17, e0268260.	2.5	1
3	Aberrant gene expression induced by a high fat diet is linked to H3K9 acetylation in the promoter-proximal region. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194691.	1.9	5
4	Gene therapy for inherited retinal and optic nerve degenerations. Expert Opinion on Biological Therapy, 2018, 18, 37-49.	3.1	72
5	Impact of silencing hepatic SREBP-1 on insulin signaling. PLoS ONE, 2018, 13, e0196704.	2.5	9
6	Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice. Journal of Biological Chemistry, 2017, 292, 10455-10464.	3.4	58
7	Gene therapy for age-related macular degeneration. Expert Opinion on Biological Therapy, 2017, 17, 1235-1244.	3.1	53
8	Gene targets of mouse miR-709: regulation of distinct pools. Scientific Reports, 2016, 6, 18958.	3.3	12
9	Enhancing hepatic mitochondrial fatty acid oxidation stimulates eating in food-deprived mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R131-R137.	1.8	5
10	Sterol Regulatory Element-binding Protein-1 (SREBP-1) Is Required to Regulate Glycogen Synthesis and Gluconeogenic Gene Expression in Mouse Liver. Journal of Biological Chemistry, 2014, 289, 5510-5517.	3.4	102
11	Vector and Helper Genome Rearrangements Occur During Production of Helper-Dependent Adenoviral Vectors. Human Gene Therapy Methods, 2013, 24, 1-10.	2.1	7
12	shRNA-Induced Interferon-Stimulated Gene Analysis. Methods in Molecular Biology, 2012, 820, 163-177.	0.9	6
13	Comparative nucleic acid transfection efficacy in primary hepatocytes for gene silencing and functional studies. BMC Research Notes, 2011, 4, 8.	1.4	22
14	Constitutive Expression of Short Hairpin RNAin VivoTriggers Buildup of Mature Hairpin Molecules. Human Gene Therapy, 2011, 22, 1483-1497.	2.7	11
15	Robust Hepatic Gene Silencing for Functional Studies Using Helper-Dependent Adenoviral Vectors. Human Gene Therapy, 2009, 20, 87-94.	2.7	21
16	Accurate single-day titration of adenovirus vectors based on equivalence of protein VII nuclear dots and infectious particles. Journal of Virological Methods, 2009, 159, 251-258.	2.1	19
17	Helper-dependent Adenovirus-mediated Short Hairpin RNA Expression in the Liver Activates the Interferon Response. Journal of Biological Chemistry, 2008, 283, 2120-2128.	3.4	33
18	Effects of glucose metabolism on the regulation of genes of fatty acid synthesis and triglyceride secretion in the liver. Journal of Lipid Research, 2007, 48, 1499-1510.	4.2	43

NúRIA MORRAL

#	Article	IF	CITATIONS
19	Transcription releases protein VII from adenovirus chromatin. Virology, 2007, 369, 411-422.	2.4	50
20	Novel targets and therapeutic strategies for type 2 diabetes. Trends in Endocrinology and Metabolism, 2003, 14, 169-175.	7.1	58
21	Adenovirus-Mediated Expression of Glucokinase in the Liver as an Adjuvant Treatment for Type 1 Diabetes. Human Gene Therapy, 2002, 13, 1561-1570.	2.7	33
22	Lethal Toxicity, Severe Endothelial Injury, and a Threshold Effect with High Doses of an Adenoviral Vector in Baboons. Human Gene Therapy, 2002, 13, 143-154.	2.7	160
23	Basal Insulin Gene Expression Significantly Improves Conventional Insulin Therapy in Type 1 Diabetic Rats. Diabetes, 2002, 51, 130-138.	0.6	71
24	Challenges for Gene Therapy of Type 1 Diabetes. Current Gene Therapy, 2002, 2, 403-414.	2.0	6
25	Hepatic insulin expression improves glycemic control in type 1 diabetic rats. Diabetes Research and Clinical Practice, 2001, 52, 153-163.	2.8	44
26	Toxicity Associated with Repeated Administration of First-Generation Adenovirus Vectors Does Not Occur with a Helper-Dependent Vector. Molecular Medicine, 2000, 6, 179-195.	4.4	79
27	Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12816-12821.	7.1	412
28	Use of a Liver-Specific Promoter Reduces Immune Response to the Transgene in Adenoviral Vectors. Human Gene Therapy, 1999, 10, 1773-1781.	2.7	174
29	Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nature Genetics, 1998, 18, 180-183.	21.4	641
30	Toxicological Comparison of E2a-Deleted and First-Generation Adenoviral Vectors Expressing <i>l±</i> ₁ -Antitrypsin after Systemic Delivery. Human Gene Therapy, 1998, 9, 1587-1598.	2.7	118
31	High Doses of a Helper-Dependent Adenoviral Vector Yield Supraphysiological Levels of <i>α</i> ₁ -Antitrypsin with Negligible Toxicity. Human Gene Therapy, 1998, 9, 2709-2716.	2.7	249
32	Immune Responses to Reporter Proteins and High Viral Dose Limit Duration of Expression with Adenoviral Vectors: Comparison of E2a Wild Type and E2a Deleted Vectors. Human Gene Therapy, 1997, 8, 1275-1286.	2.7	175
33	CFTR haplotypic variability for normal and mutant genes in cystic fibrosis families from southern France. Human Genetics, 1996, 98, 336-344.	3.8	29
34	Haplotype analysis of 94 cystic fibrosis mutations with seven polymorphicCFTR DNA markers. , 1996, 8, 149-159.		42
35	Haplotype analysis of 94 cystic fibrosis mutations with seven polymorphic CFTR DNA markers. Human Mutation, 1996, 8, 149-159.	2.5	5
36	Development of a complementing cell line and a system for construction of adenovirus vectors with E1 and E2a deleted. Journal of Virology, 1996, 70, 7030-7038.	3.4	89

NúRIA MORRAL

#	Article	IF	CITATIONS
37	Analysis of microsatellites by direct blotting electrophoresis and chemiluminescence detection. Electrophoresis, 1995, 16, 1886-1888.	2.4	18
38	Identical Intragenic MicrosateUite Haplotype Found in Cystic Fibrosis Chromosomes Bearing Mutation G551D in Irish, English, Scottish, Breton and Czech Patients. Human Heredity, 1995, 45, 6-12.	0.8	18
39	Analysis of the CFTR gene confirms the high genetic heterogeneity of the Spanish population: 43 mutations account for only 78% of CF chromosomes. Human Genetics, 1994, 93, 447-51.	3.8	65
40	Complete detection of mutations in cystic fibrosis patients of Native American origin. Human Genetics, 1994, 94, 629-32.	3.8	35
41	Cystic fibrosis in a low-incidence population: two major mutations in Finland. Human Genetics, 1994, 93, 162-166.	3.8	35
42	The origin of the major cystic fibrosis mutation (ΔF508) in European populations. Nature Genetics, 1994, 7, 169-175.	21.4	323
43	Reply to — Age of the ΔF508 cystic fibrosis mutation. Nature Genetics, 1994, 8, 216-218.	21.4	25
44	Cystic fibrosis in Spain: high frequency of mutation G542X in the Mediterranean coastal area. Human Genetics, 1993, 91, 66-70.	3.8	35
45	Microsatellite haplotypes for cystic fibrosis: mutation frameworks and evolutionary tracers. Human Molecular Genetics, 1993, 2, 1015-1022.	2.9	97
46	Uniparental inheritance of microsatellite alleles of the cystic fibrosis gene (CFTR): identification of a 50 kilobase deletion. Human Molecular Genetics, 1993, 2, 677-681.	2.9	32
47	Multiplex PCR amplification of three microsatellites within the CFTR gene. Genomics, 1992, 13, 1362-1364.	2.9	73
48	Dinucleotide (CA/GT) repeat polymorphism in intron 17B of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Human Genetics, 1992, 88, 356.	3.8	21
49	CAGT Microsatellite alleles within the cystic fibrosis transmembrane conductance regulator (CFTR) gene are not generated by unequal crossingover. Genomics, 1991, 10, 692-698.	2.9	129
50	The search for South European cystic fibrosis mutations: Identification of two new mutations, four variants, and intronic sequences. Genomics, 1991, 10, 193-200.	2.9	117
51	Prenatal diagnosis of cystic fibrosis by multiplex PCR of mutation and microsatellite alleles. Lancet, The, 1991, 338, 458.	13.7	12
52	A tetranucleotide repeat polymorphism in the cystic fibrosis gene. Human Genetics, 1991, 86, 625.	3.8	35
53	ΔF508 GENE DELETION IN CYSTIC FIBROSIS IN SOUTHERN EUROPE. Lancet, The, 1989, 334, 1404.	13.7	56