Alex G Shard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6669382/publications.pdf Version: 2024-02-01

ALEY C SHADD

#	Article	IF	CITATIONS
1	ARXPS characterisation of plasma polymerised surface chemical gradients. Surface and Interface Analysis, 2006, 38, 1497-1504.	1.8	227
2	Effect of Crystallization on the Electronic Energy Levels and Thin Film Morphology of P3HT:PCBM Blends. Macromolecules, 2011, 44, 2944-2952.	4.8	225
3	XPS and AFM surface studies of solvent-cast PS/PMMA blends. Polymer, 2001, 42, 1121-1129.	3.8	197
4	Detection limits in XPS for more than 6000 binary systems using Al and Mg Kα Xâ€rays. Surface and Interface Analysis, 2014, 46, 175-185.	1.8	189
5	Organic Depth Profiling of a Nanostructured Delta Layer Reference Material Using Large Argon Cluster Ions. Analytical Chemistry, 2010, 82, 98-105.	6.5	152
6	A NEXAFS Examination of Unsaturation in Plasma Polymers of Allylamine and Propylamine. Journal of Physical Chemistry B, 2004, 108, 12472-12480.	2.6	144
7	Emerging Techniques for Submicrometer Particle Sizing Applied to Stöber Silica. Langmuir, 2012, 28, 10860-10872.	3.5	144
8	Practical guides for x-ray photoelectron spectroscopy: First steps in planning, conducting, and reporting XPS measurements. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	137
9	Practical guides for x-ray photoelectron spectroscopy: Quantitative XPS. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	134
10	Argon Cluster Ion Beams for Organic Depth Profiling: Results from a VAMAS Interlaboratory Study. Analytical Chemistry, 2012, 84, 7865-7873.	6.5	129
11	Effects of Annealing on the Surface Composition and Morphology of PS/PMMA Blend. Macromolecules, 2000, 33, 8453-8459.	4.8	128
12	Measurement of sputtering yields and damage in C60 SIMS depth profiling of model organic materials. Surface and Interface Analysis, 2007, 39, 294-298.	1.8	126
13	A Straightforward Method For Interpreting XPS Data From Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 16806-16813.	3.1	126
14	Thickness of Spin-Cast Polymer Thin Films Determined by Angle-Resolved XPS and AFM Tip-Scratch Methods. Langmuir, 2000, 16, 2281-2284.	3.5	119
15	Quantitative Molecular Depth Profiling of Organic Delta-Layers by C60 Ion Sputtering and SIMS. Journal of Physical Chemistry B, 2008, 112, 2596-2605.	2.6	119
16	Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy. Analytical Chemistry, 2011, 83, 8659-8666.	6.5	100
17	Surface Analysis of Biodegradable Polymer Blends of Poly(sebacic anhydride) and Poly(dl-lactic acid). Macromolecules, 1996, 29, 2205-2212.	4.8	92
18	Synthesis and characterization of segmented polyurethanes based on amphiphilic polyether diols. Biomaterials, 1996, 17, 2273-2280.	11.4	92

#	Article	IF	CITATIONS
19	Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing. Langmuir, 2016, 32, 2216-2224.	3.5	92
20	Surface feature size of spin cast PS/PMMA blends. Polymer, 2002, 43, 4973-4977.	3.8	73
21	XPS topofactors: determining overlayer thickness on particles and fibres. Surface and Interface Analysis, 2009, 41, 541-548.	1.8	73
22	The matrix effect in organic secondary ion mass spectrometry. International Journal of Mass Spectrometry, 2015, 377, 599-609.	1.5	72
23	Quantitation of IgG protein adsorption to gold nanoparticles using particle size measurement. Analytical Methods, 2013, 5, 4591.	2.7	71
24	Plasma Co-Polymerisation of Two Strongly Interacting Monomers: Acrylic Acid and Allylamine. Plasma Processes and Polymers, 2005, 2, 641-649.	3.0	68
25	A systematic comparison of different techniques to determine the zeta potential of silica nanoparticles in biological medium. Analytical Methods, 2015, 7, 9835-9843.	2.7	64
26	Analysis of protein coatings on gold nanoparticles by XPS and liquid-based particle sizing techniques. Biointerphases, 2015, 10, 019012.	1.6	62
27	Sample Cooling or Rotation Improves C ₆₀ Organic Depth Profiles of Multilayered Reference Samples: Results from a VAMAS Interlaboratory Study. Journal of Physical Chemistry B, 2010, 114, 769-774.	2.6	59
28	Chemical and spatial analysis of protein loaded PLGA microspheres for drug delivery applications. Journal of Controlled Release, 2012, 162, 321-329.	9.9	56
29	Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study. Journal of Physical Chemistry B, 2015, 119, 10784-10797.	2.6	56
30	3D ToF-SIMS Imaging of Polymer Multilayer Films Using Argon Cluster Sputter Depth Profiling. ACS Applied Materials & Interfaces, 2015, 7, 2654-2659.	8.0	54
31	Surface oxidation of polyethylene, polystyrene, and PEEK: the synthon approach. Macromolecules, 1992, 25, 2053-2054.	4.8	53
32	Cellular attachment and spatial control of cells using micro-patterned ultra-violet/Ozone treatment in serum enriched media. Biomaterials, 2004, 25, 4079-4086.	11.4	45
33	Plasma deposited metal Schiff-base compounds as antimicrobials. New Journal of Chemistry, 2011, 35, 1477.	2.8	45
34	Measuring the size and density of nanoparticles by centrifugal sedimentation and flotation. Analytical Methods, 2018, 10, 1725-1732.	2.7	44
35	In situ Atomic Force Microscopy Imaging of Polymer Degradation in an Aqueous Environment. Langmuir, 1994, 10, 4417-4419.	3.5	42
36	Information on the Monomer Sequence of Poly(lactic acid) and Random Copolymers of Lactic Acid and Glycolic Acid by Examination of Static Secondary Ion Mass Spectrometry Ion Intensities. Macromolecules, 1996, 29, 748-754.	4.8	41

#	Article	IF	CITATIONS
37	A chemically defined surface for the co-culture of melanocytes and keratinocytes. Biomaterials, 2005, 26, 7068-7081.	11.4	41
38	Evaluating the Internal Structure of Core–Shell Nanoparticles Using X-ray Photoelectron Intensities and Simulated Spectra. Journal of Physical Chemistry C, 2015, 119, 17687-17696.	3.1	41
39	Protein identification by 3D OrbiSIMS to facilitate in situ imaging and depth profiling. Nature Communications, 2020, 11, 5832.	12.8	40
40	Surface Characterization of Carbohydrate Microarrays. Langmuir, 2010, 26, 17143-17155.	3.5	39
41	The structures of sulphur on Pd(111) studied by X-ray standing wavefield absorption and surface EXAFS. Surface Science, 1998, 410, 321-329.	1.9	37
42	Spatial control of cell attachment using plasma micropatterned polymers. Surface and Interface Analysis, 2002, 33, 742-747.	1.8	37
43	Intensity calibration and sensitivity factors for XPS instruments with monochromatic Ag Lα and Al Kα sources. Surface and Interface Analysis, 2019, 51, 763-773.	1.8	37
44	Introduction to topical collection: Reproducibility challenges and solutions with a focus on guides to XPS analysis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	35
45	Biocompatibility and the efficacy of medical implants. Regenerative Medicine, 2006, 1, 789-800.	1.7	34
46	The Effect of Positive Ion Energy on Plasma Polymerization:Â A Comparison between Acrylic and Propionic Acids. Journal of Physical Chemistry B, 2005, 109, 3207-3211.	2.6	33
47	Surface modification of PDMS via self-organization of vinyl-terminated small molecules. Soft Matter, 2009, 5, 2286.	2.7	33
48	Versailles Project on Advanced Materials and Standards Interlaboratory Study on Measuring the Thickness and Chemistry of Nanoparticle Coatings Using XPS and LEIS. Journal of Physical Chemistry C, 2016, 120, 24070-24079.	3.1	33
49	Modulations of valence-band photoemission spectrum fromC60monolayers on Ag(111). Physical Review B, 2003, 67, .	3.2	31
50	Chemical and thermo-responsive characterisation of surfaces formed by plasma polymerisation of N-isopropyl acrylamide. Surface and Interface Analysis, 2006, 38, 1109-1116.	1.8	31
51	A technique for calculation of shell thicknesses for core–shell–shell nanoparticles from XPS data. Surface and Interface Analysis, 2016, 48, 274-282.	1.8	30
52	Analysis Of The Interface And Its Position In C60n+ Secondary Ion Mass Spectrometry Depth Profiling. Analytical Chemistry, 2009, 81, 75-79.	6.5	29
53	Topography and field effects in secondary ion mass spectrometry Part II: insulating samples. Surface and Interface Analysis, 2012, 44, 238-245.	1.8	29
54	XPS and SSIMS Analysis Revealing Surface Segregation and Short-Range Order in Solid Films of Block Copolymers of PEO and PLGA. Macromolecules, 1997, 30, 3051-3057.	4.8	28

#	Article	IF	CITATIONS
55	Chlorine Adsorption on Silver (111) at Low Temperatures. Journal of Physical Chemistry B, 2000, 104, 2743-2748.	2.6	28
56	VAMAS interlaboratory study on organic depth profiling. Surface and Interface Analysis, 2011, 43, 1240-1250.	1.8	28
57	Comparisons of Analytical Approaches for Determining Shell Thicknesses of Core–Shell Nanoparticles by X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 4073-4082.	3.1	28
58	Number Concentration of Gold Nanoparticles in Suspension: SAXS and spICPMS as Traceable Methods Compared to Laboratory Methods. Nanomaterials, 2019, 9, 502.	4.1	28
59	Probing the Surface Chemical Structure of the Novel Biodegradable Polymer Poly(β-malic acid) and Its Ester Derivatives Using ToF-SIMS and XPS. Macromolecules, 1997, 30, 6920-6928.	4.8	27
60	Preparation and characterization of ethylenediamine and cysteamine plasma polymerized films on piezoelectric quartz crystal surfaces for a biosensor. Thin Solid Films, 2008, 516, 1249-1255.	1.8	27
61	Film thickness measurement and contamination layer correction for quantitative XPS. Surface and Interface Analysis, 2016, 48, 164-172.	1.8	27
62	Plasma oxidation versus photooxidation of polystyrene. The Journal of Physical Chemistry, 1991, 95, 9436-9438.	2.9	26
63	Chemical and biological characterisation of a sensor surface for bioprocess monitoring. Biosensors and Bioelectronics, 2011, 26, 2940-2947.	10.1	26
64	Angle Dependence of Argon Gas Cluster Sputtering Yields for Organic Materials. Journal of Physical Chemistry B, 2015, 119, 3297-3303.	2.6	26
65	Sticky Measurement Problem: Number Concentration of Agglomerated Nanoparticles. Langmuir, 2019, 35, 4927-4935.	3.5	26
66	Quantification of Variable Functional-Group Densities of Mixed-Silane Monolayers on Surfaces via a Dual-Mode Fluorescence and XPS Label. Analytical Chemistry, 2015, 87, 2685-2692.	6.5	25
67	Characterization of IgGâ€proteinâ€coated polymeric nanoparticles using complementary particle sizing techniques. Surface and Interface Analysis, 2014, 46, 663-667.	1.8	24
68	Chain End Contribution in Static Secondary Ion Mass Spectrometry of Oligomeric Poly(ethylene) Tj ETQq0 0 0 rg	gBT_/Qverl	ock 10 Tf 50 2
69	Structural and electronic properties of ordered La@C82 films on Si(). Surface Science, 2003, 522, L15-L20.	1.9	23
70	Simplifying the Delivery of Melanocytes and Keratinocytes for the Treatment of Vitiligo Using a Chemically Defined Carrier Dressing. Journal of Investigative Dermatology, 2008, 128, 1554-1564.	0.7	23
71	Quantitative XPS depth profiling of codeine loaded poly(l-lactic acid) films using a coronene ion sputter source. Journal of Controlled Release, 2009, 138, 40-44.	9.9	23

72Neutralized Chimeric Avidin Binding at a Reference Biosensor Surface. Langmuir, 2015, 31, 1921-1930.3.523

#	Article	IF	CITATIONS
73	The matrix effect in secondary ion mass spectrometry. Applied Surface Science, 2018, 439, 605-611.	6.1	23
74	X-ray Photoelectron Spectroscopy and Time-of-Flight SIMS Investigations of Hyaluronic Acid Derivatives. Langmuir, 1997, 13, 2808-2814.	3.5	22
75	Organic Depth Profiling of a Binary System: the Compositional Effect on Secondary Ion Yield and a Model for Charge Transfer during Secondary Ion Emission. Journal of Physical Chemistry B, 2009, 113, 11574-11582.	2.6	22
76	Role of consistent terminology in XPS reproducibility. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	22
77	VAMAS interlaboratory study on organic depth profiling. Part I: Preliminary report. Surface and Interface Analysis, 2011, 43, 510-513.	1.8	21
78	Exploring graphene formation on the C-terminated face of SiC by structural, chemical and electrical methods. Carbon, 2014, 69, 221-229.	10.3	21
79	Effects of temperature and ammonia flow rate on the chemical vapour deposition growth of nitrogen-doped graphene. Physical Chemistry Chemical Physics, 2014, 16, 19446.	2.8	21
80	Depth resolution at organic interfaces sputtered by argon gas cluster ions: the effect of energy, angle and cluster size. Analyst, The, 2015, 140, 6508-6516.	3.5	21
81	Angular Distribution of Molecules Sputtered by Gas Cluster Ion Beams and Implications for Secondary Neutral Mass Spectrometry. Journal of Physical Chemistry C, 2016, 120, 25317-25327.	3.1	21
82	Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 063208.	2.1	21
83	Surface organization of polyurethanes observed by static secondary ion mass spectrometry. Polymer, 1995, 36, 775-779.	3.8	20
84	Evaluation of Two Methods for Determining Shell Thicknesses of Core–Shell Nanoparticles by X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 22730-22738.	3.1	20
85	Surface Characterization of Methyl Methacrylate-Polyethylene Glycol Methacrylate Copolymers by Secondary Ion Mass Spectrometry and X-ray Photoelectron Spectroscopy. Macromolecules, 1995, 28, 7855-7859.	4.8	19
86	Sputtering Yields for Mixtures of Organic Materials Using Argon Gas Cluster Ions. Journal of Physical Chemistry B, 2015, 119, 13433-13439.	2.6	19
87	Robust and accurate measurements of gold nanoparticle concentrations using UV-visible spectrophotometry. Biointerphases, 2018, 13, 061002.	1.6	19
88	Structural studies of the surfaces of chlorine and iodine on Rh (111). Surface Science, 1999, 429, 279-286.	1.9	18
89	Study of the endâ€group contribution to ToFâ€SIMS and Gâ€SIMS spectra of poly (lactic acid) using deuterium labelling. Surface and Interface Analysis, 2007, 39, 852-859.	1.8	18
90	Dual beam organic depth profiling using large argon cluster ion beams. Surface and Interface Analysis, 2014, 46, 936-939.	1.8	18

#	Article	IF	CITATIONS
91	Measuring the relative concentration of particle populations using differential centrifugal sedimentation. Analytical Methods, 2018, 10, 2647-2657.	2.7	18
92	Analysis of metastable ions in the ToF-SIMS spectra of polymers. International Journal of Mass Spectrometry, 2008, 269, 85-94.	1.5	16
93	Investigation of the Surface Chemical Structure of Some Biomedical Poly(amidoamine)s Using High-Resolution X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry. Macromolecules, 1995, 28, 8259-8271.	4.8	15
94	Structures of chlorine on palladium (111). Surface Science, 2000, 445, 309-314.	1.9	15
95	Electron Flood Gun Damage Effects in 3D Secondary Ion Mass Spectrometry Imaging of Organics. Journal of the American Society for Mass Spectrometry, 2014, 25, 1565-1571.	2.8	15
96	Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles. Nanoscale, 2022, 14, 4690-4704.	5.6	15
97	Chemical measurements of polyethylene glycol shells on gold nanoparticles in the presence of aggregation. Biointerphases, 2016, 11, 04B306.	1.6	14
98	Intensity calibration for monochromated Al Kα XPS instruments using polyethylene. Surface and Interface Analysis, 2019, 51, 618-626.	1.8	14
99	A demonstration of Auger electron emission stimulated by secondary radiation: implications for x-ray standing-wave analysis of surfaces. Journal of Physics Condensed Matter, 1998, 10, L69-L72.	1.8	13
100	Electrostatic ordering of the lanthanum endoatom inLa@C82adsorbed on metal surfaces. Physical Review B, 2005, 71, .	3.2	13
101	A simple approach to measuring thick organic films using the XPS inelastic background. Surface and Interface Analysis, 2017, 49, 1256-1270.	1.8	13
102	X-ray photoelectron spectroscopy. , 2020, , 349-371.		13
103	The structure of (â^š3×â^š3)R30° iodine on Pd (111) surface studied by normal incidence X-ray standing wavefield absorption. Chemical Physics Letters, 1999, 306, 341-344.	2.6	12
104	Electronic structure of pristine and potassium-dopedY@C82metallofullerene. Physical Review B, 2006, 73, .	3.2	12
105	Multitechnique characterization of oligo(ethylene glycol) functionalized gold nanoparticles. Biointerphases, 2016, 11, 04B304.	1.6	12
106	Orientation and constraints of endohedral lanthanum inLa@C82molecules adsorbed on Cu(111). Physical Review B, 2003, 68, .	3.2	11
107	C60 ion sputtering of layered organic materials. Applied Surface Science, 2008, 255, 962-965.	6.1	11
108	Sample rotation improves gas cluster sputter depth profiling of polymers. Surface and Interface Analysis, 2017, 49, 953-959.	1.8	11

#	Article	IF	CITATIONS
109	Site occupancy of chlorine onCu(111)using normal-incidence x-ray standing waves: The energy difference between fcc and hcp hollow sites. Physical Review B, 2004, 70, .	3.2	10
110	A novel approach for improvement of the interfacial binding of ceramics for dental materials: Chemical treatment and oxygen plasma etching. Journal of Applied Polymer Science, 2008, 110, 2656-2664.	2.6	10
111	Surface analytical characterization of carbohydrate microarrays. Surface and Interface Analysis, 2010, 42, 1188-1192.	1.8	10
112	Highly-selective wettability on organic light-emitting-diodes patterns by sequential low-power plasmas. Journal of Applied Physics, 2010, 107, .	2.5	10
113	Traceable thickness determination of organic nanolayers by X-ray reflectometry. Surface and Interface Analysis, 2014, 46, 911-914.	1.8	10
114	Surface-Energy Control and Characterization of Nanoparticle Coatings. Journal of Physical Chemistry C, 2020, 124, 11200-11211.	3.1	10
115	Method for Molecular Layer Deposition Using Gas Cluster Ion Beam Sputtering with Example Application In Situ Matrix-Enhanced Secondary Ion Mass Spectrometry. Analytical Chemistry, 2021, 93, 3436-3444.	6.5	10
116	Quantification of hard Xâ€ray photoelectron spectroscopy: Calculating relative sensitivity factors for 1.5―to 10â€keV photons in any instrument geometry. Surface and Interface Analysis, 2022, 54, 442-454.	1.8	10
117	Static SIMS analysis of random poly (lactic-co-glycolic acid). Surface and Interface Analysis, 2002, 33, 528-532.	1.8	9
118	Al Kα XPS reference spectra of polyethylene for all instrument geometries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	9
119	Predicting the wettability of patterned ITO surface using ToF-SIMS images. Surface and Interface Analysis, 2010, 42, 911-915.	1.8	8
120	Depth Resolution, Angle Dependence, and the Sputtering Yield of Irganox 1010 by Coronene Primary Ions. Journal of Physical Chemistry B, 2013, 117, 11885-11892.	2.6	8
121	Extracting information on the surface monomer unit distribution of PLGA by ToF IMS. Surface and Interface Analysis, 2008, 40, 1168-1175.	1.8	7
122	Quantifying ligand–cell interactions and determination of the surface concentrations of ligands on hydrogel films: The measurement challenge. Biointerphases, 2015, 10, 021007.	1.6	7
123	A Novel Hybrid Dual Analyzer SIMS Instrument for Improved Surface and 3D-Analysis. Microscopy and Microanalysis, 2016, 22, 340-341.	0.4	7
124	Argon cluster cleaning of Ga ⁺ FIBâ€milled sections of organic and hybrid materials. Surface and Interface Analysis, 2020, 52, 327-334.	1.8	7
125	Ultraviolet–visible spectrophotometry. , 2020, , 185-196.		7
126	Chemical and structural identification of material defects in superconducting quantum circuits. Materials for Quantum Technology, 2022, 2, 032001.	3.1	7

#	Article	IF	CITATIONS
127	Normal incidence X-ray standing wavefield (NIXSW) study of the Rh(111)-(â^š7 × â^š7)R19.1°-P surface. Surface Science, 1998, 407, L623-L628.	1.9	6
128	Electronic structure of potassium-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">La<mml:mi>@</mml:mi><mml:misub><mml:mi mathvariant="normal">C<mml:mn>82</mml:mn></mml:mi </mml:misub></mml:mi </mml:mrow>metallofulle studied with photoelectron spectroscopy. Physical Review B, 2007, 76</mml:math 	3.2 rene	6
129	Depth resolution and inhomogeneity of the sputtering dose with sample rotation and ion beam rastering. Surface and Interface Analysis, 2011, 43, 1430-1435.	1.8	6
130	Exposure of mass-selected bimetallic Pt–Ti nanoalloys to oxygen explored using scanning transmission electron microscopy and density functional theory. RSC Advances, 2018, 8, 27276-27282.	3.6	6
131	Establishing SI-Traceability of Nanoparticle Size Values Measured with Line-Start Incremental Centrifugal Liquid Sedimentation. Separations, 2019, 6, 15.	2.4	6
132	Argon Cluster Sputtering Reveals Internal Chemical Distribution in Submicron Polymeric Particles. Journal of Physical Chemistry C, 2020, 124, 23752-23763.	3.1	6
133	Molecular Formula Prediction for Chemical Filtering of 3D OrbiSIMS Datasets. Analytical Chemistry, 2022, 94, 4703-4711.	6.5	6
134	An electrostrictive drive for fine pitch control in double-crystal monochromators. Journal of Synchrotron Radiation, 1998, 5, 829-831.	2.4	5
135	Ceric Ammonium Nitrate Initiated Grafting of PEG to Plasma Polymers for Cellâ€Resistant Surfaces. Plasma Processes and Polymers, 2008, 5, 192-201.	3.0	5
136	OLED substrate conditioning by low power density RF plasmas. Surface and Coatings Technology, 2009, 204, 99-107.	4.8	5
137	Preface: In Focus Issue on Nanoparticle Interfaces. Biointerphases, 2016, 11, 04B101.	1.6	5
138	Glossary of methods and terms used in surface chemical analysis (IUPAC Recommendations 2020). Pure and Applied Chemistry, 2020, 92, 1781-1860.	1.9	5
139	A twoâ€point calibration method for quantifying organic binary mixtures using secondary ion mass spectrometry in the presence of matrix effects. Surface and Interface Analysis, 2022, 54, 363-373.	1.8	5
140	lonic liquid [PMIM]+[NTf2]â^' (Solarpur®) characterized by XPS. Surface Science Spectra, 2022, 29, 014001.	1.3	5
141	Depth profiling of Irganoxâ€3114 nanoscale delta layers in a matrix of Irganoxâ€1010 using conventional Cs ⁺ and O ₂ ⁺ ion beams. Surface and Interface Analysis, 2014, 46, 36-41.	1.8	4
142	Summary of ISO/TC 201 standard: ISO 19668—Surface chemical analysis—Xâ€ray photoelectron spectroscopy—Estimating and reporting detection limits for elements in homogeneous materials. Surface and Interface Analysis, 2018, 50, 87-89.	1.8	4
143	Characterization of buried interfaces using Ga Kα hard X-ray photoelectron spectroscopy (HAXPES). Faraday Discussions, 2022, 236, 311-337.	3.2	4
144	Summary of ISO/TC 201 Technical Report 23173—Surface chemical analysis—Electron spectroscopies—Measurement of the thickness and composition of nanoparticle coatings. Surface and Interface Analysis, 2021, 53, 893-898.	1.8	3

#	Article	IF	CITATIONS
145	Gold, silver, and copper reference spectra for XPS instruments with monochromatic Ag L <i>$\hat{l}\pm\langle/i\rangle$ sources. Surface Science Spectra, 2021, 28, .</i>	1.3	3
146	Composition, thickness, and homogeneity of the coating of core–shell nanoparticles—possibilities, limits, and challenges of X-ray photoelectron spectroscopy. Analytical and Bioanalytical Chemistry, 2022, , 1.	3.7	3
147	Peptide engineered microcantilevers for selective chemical force microscopy and monitoring of nanoparticle capture. Biointerphases, 2016, 11, 04B312.	1.6	2
148	Summary of ISO/TC 201 Standard: ISO 22415—Surface chemical analysis—Secondary ion mass spectrometry—Method for determining yield volume in argon cluster sputter depth profiling of organic materials. Surface and Interface Analysis, 2019, 51, 1018-1020.	1.8	2
149	Performance of the VUV beamline 4.1â€at the SRS, Daresbury Laboratory. Journal of Synchrotron Radiation, 1998, 5, 569-571.	2.4	1
150	Simulation method for investigating the use of transition-edge sensors as spectroscopic electron detectors. Superconductor Science and Technology, 2021, 34, 125007.	3.5	1
151	Measurement of Peptide Coating Thickness and Chemical Composition Using XPS. Methods in Molecular Biology, 2021, 2208, 203-224.	0.9	1
152	Quantifiable correlation of ToFâ \in SIMS and XPS data from polymer surfaces with controlled amino acid and peptide content. Surface and Interface Analysis, 0, , .	1.8	1
153	SP-23 Development of delivery systems for keratinocyte/melanocyte co-culture for grafting of patients with vitiligo. Pigment Cell & Melanoma Research, 2003, 16, 592-592.	3.6	0
154	British Society for Matrix Biology Autumn Meeting †Joint with the UK Tissue & Cell Engineering Society, University of Bristol, UK. International Journal of Experimental Pathology, 2005, 86, A1-A56.	1.3	0
155	Correlations for predicting the surface wettability for organic light-emitting-diode patterns by x-ray photoelectron spectroscopy analysis. Journal of Applied Physics, 2010, 108, 114901.	2.5	0
156	Quantitative HAXPES. Journal of Surface Analysis (Online), 2019, 26, 156-157.	0.1	0