Petr IlÃ-k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6668577/publications.pdf Version: 2024-02-01

<u> Σετρ Ιι Δ΄</u>

#	Article	IF	CITATIONS
1	Alternative electron transport mediated by flavodiiron proteins is operational in organisms from cyanobacteria up to gymnosperms. New Phytologist, 2017, 214, 967-972.	7.3	124
2	Structural characterization of a plant photosystem <scp>I</scp> and <scp>NAD(P)H</scp> dehydrogenase supercomplex. Plant Journal, 2014, 77, 568-576.	5.7	83
3	High-temperature induced chlorophyll fluorescence changes in barley leaves Comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve. Plant Science, 1997, 124, 159-164.	3.6	63
4	High-Temperature Induced Chlorophyll Fluorescence Rise in Plants at 40–50 °C: Experimental and Theoretical Approach. Photosynthesis Research, 2004, 81, 49-66.	2.9	62
5	Novel Antitumor Cisplatin and Transplatin Derivatives Containing 1-Methyl-7-Azaindole: Synthesis, Characterization, and Cellular Responses. Journal of Medicinal Chemistry, 2015, 58, 847-859.	6.4	50
6	Heat-induced disassembly and degradation of chlorophyll-containing protein complexes in vivo. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 63-70.	1.0	47
7	A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 12-20.	1.0	44
8	Photosynthetic alterations of pea leaves infected systemically by pea enation mosaic virus: A coordinated decrease in efficiencies of CO2 assimilation and photosystem II photochemistry. Plant Physiology and Biochemistry, 2011, 49, 1279-1289.	5.8	44
9	Ultra-structural and functional changes in the chloroplasts of detached barley leaves senescing under dark and light conditions. Journal of Plant Physiology, 2003, 160, 1051-1058.	3.5	41
10	Model studies of chlorophyll fluorescence reabsorption at chloroplast level under different exciting conditions. Photosynthesis Research, 1994, 40, 67-74.	2.9	40
11	Evolutionary loss of lightâ€harvesting proteins Lhcb6 and Lhcb3 in major land plant groups – breakâ€up of current dogma. New Phytologist, 2016, 210, 808-814.	7.3	40
12	Structural variability of plant photosystem II megacomplexes in thylakoid membranes. Plant Journal, 2017, 89, 104-111.	5.7	40
13	Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating. New Phytologist, 2018, 218, 1278-1287.	7.3	40
14	Heat injury of barley leaves detected by the chlorophyll fluorescence temperature curve. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1101, 359-362.	1.0	37
15	Determination of the antenna heterogeneity of Photosystem II by direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different light intensities. Photosynthesis Research, 2001, 68, 247-257.	2.9	35
16	A theoretical study on effect of the initial redox state of cytochrome b559 on maximal chlorophyll fluorescence level (FM): implications for photoinhibition of photosystem II. Journal of Theoretical Biology, 2005, 233, 287-300.	1.7	26
17	Title is missing!. Photosynthesis Research, 1999, 62, 107-116.	2.9	24
18	Thermally Induced Chemiluminescence of Barley Leaves. Photochemistry and Photobiology, 1999, 69, 211-217.	2.5	20

Petr IlÃk

#	Article	IF	CITATIONS
19	Origin of Chlorophyll Fluorescence in Plants at 55–75°C¶. Photochemistry and Photobiology, 2003, 77, 68.	2.5	20
20	Chlorophyll fluorescence changes at high temperatures induced by linear heating of greening barley leaves. Photosynthesis Research, 1995, 44, 271-275.	2.9	13
21	Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce. Photosynthesis Research, 2017, 132, 165-179.	2.9	13
22	Chlorophyll fluorescence temperature curve on Klebsormidium flaccidum cultivated at different temperature regimes. Journal of Plant Physiology, 2001, 158, 1131-1136.	3.5	12
23	Organization of Plant Photosystem II and Photosystem I Supercomplexes. Sub-Cellular Biochemistry, 2018, 87, 259-286.	2.4	12
24	Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. Plant Journal, 2020, 104, 215-225.	5.7	11
25	The effect of surface modification on the fluorescence and morphology of CdSe nanoparticles embedded in a 3D phosphazene-based matrix: nanowire-like quantum dots. Journal of Materials Chemistry, 2011, 21, 1086-1093.	6.7	10
26	Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 799-809.	1.0	10
27	Towards spruce-type photosystem II: consequences of the loss of light-harvesting proteins LHCB3 and LHCB6 in Arabidopsis. Plant Physiology, 2021, 187, 2691-2715.	4.8	10
28	Appearance of long-wavelength excitation form of chlorophyll a in PS I fluorescence during greening of barley leaves under continuous light. Journal of Photochemistry and Photobiology B: Biology, 1997, 40, 149-153.	3.8	9
29	A pronounced light-induced zeaxanthin formation accompanied by an unusually slight increase in non-photochemical quenching: A study with barley leaves treated with methyl viologen at moderate light. Journal of Plant Physiology, 2008, 165, 1563-1571.	3.5	9
30	High temperature chlorophyll fluorescence rise within 61–67 °C. Spectroscopic study with intermittent light grown barley leaves. Journal of Photochemistry and Photobiology B: Biology, 1997, 39, 243-248.	3.8	6
31	2-D gel densitometer for high-contrast and selective imaging of chlorophyll-containing protein complexes separated by non-denaturing polyacrylamide gel electrophoresis. Journal of Proteomics, 2002, 51, 273-281.	2.4	6
32	Lowâ€lightâ€induced Violaxanthin Deâ€epoxidation in Shortly Preheated Leaves: Uncoupling from ΔpHâ€dependent Nonphotochemical Quenching. Photochemistry and Photobiology, 2010, 86, 722-726.	2.5	4
33	Origin of Chlorophyll Fluorescence in Plants at 55-75°C¶. Photochemistry and Photobiology, 2007, 77, 68-76.	2.5	2
34	Thermally Induced Chemiluminescence of Barley Leaves. Photochemistry and Photobiology, 1999, 69, 211.	2.5	2
35	Non-invasive monitoring of hydraulic surge propagation in a wounded tobacco plant. Plant Methods, 2018, 14, 38.	4.3	1
36	Contributory presentations/posters. Journal of Biosciences, 1999, 24, 33-198.	1.1	0