Douglas J Levey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6668444/publications.pdf

Version: 2024-02-01

105 11,678 51 papers citations h-index

106 106 106 11594 all docs docs citations times ranked citing authors

104

g-index

#	Article	IF	CITATIONS
1	Testing effects of invasive fire ants and disturbance on ant communities of the longleaf pine ecosystem. Ecological Entomology, 2021, 46, 964-972.	1.1	11
2	Seasonal and Interspecific Variation in Frugivory by a Mixed Resident-Migrant Overwintering Songbird Community. Diversity, 2021, 13, 314.	0.7	3
3	Habitat fragmentation alters the distance of abiotic seed dispersal through edge effects and direction of dispersal. Ecology, 2021, 103, e03586.	1.5	4
4	Differentiation during fig ontogeny suggests opposing selection by mutualists. Ecology and Evolution, 2020, 10, 718-736.	0.8	2
5	Ongoing accumulation of plant diversity through habitat connectivity in an 18-year experiment. Science, 2019, 365, 1478-1480.	6.0	92
6	Breeding latitude predicts timing but not rate of spring migration in a widespread migratory bird in South America. Ecology and Evolution, 2019, 9, 5752-5765.	0.8	14
7	Landscape heterogeneity is key to forecasting outcomes of plant reintroduction. Ecological Applications, 2019, 29, e01850.	1.8	11
8	Mean body size predicts colony performance in the common eastern bumble bee (<scp><i>Bombus) Tj ETQq0 0</i></scp>	0 rgBT /Ov	verlgck 10 Tf
9	Ecology on the Runway: Engaging the Public in Unexpected Places. Bulletin of the Ecological Society of America, 2017, 98, 103-109.	0.2	1
10	Testing the relative importance of local resources and landscape connectivity on Bombus impatiens (Hymenoptera, Apidae) colonies. Apidologie, 2017, 48, 545-555.	0.9	19
11	Evaluating conceptual models of landscape change. Ecography, 2017, 40, 74-84.	2.1	35
12	Experimental evidence does not support the Habitat Amount Hypothesis. Ecography, 2017, 40, 48-55.	2.1	145
13	The Effects of Silica Fertilizer as an Anti-Herbivore Defense in Cucumber. Journal of Horticultural Research, 2017, 25, 89-98.	0.4	12
14	Connectivity from a different perspective: comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology, 2016, 97, 1274-1282.	1.5	41
15	Disentangling fragmentation effects on herbivory in understory plants of longleaf pine savanna. Ecology, 2016, 97, 2248-2258.	1.5	17
16	Gut passage and secondary metabolites alter the source of post-dispersal predation for bird-dispersed chili seeds. Oecologia, 2016, 181, 905-910.	0.9	9
17	Achieving Broader Impacts in the National Science Foundation, Division of Environmental Biology. BioScience, 2015, 65, 397-407.	2.2	19
18	The influence of habitat fragmentation on multiple plant–animal interactions and plant reproduction. Ecology, 2015, 96, 2669-2678.	1.5	53

#	Article	IF	CITATIONS
19	Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 2015, 1, e1500052.	4.7	2,541
20	Loss of animal seed dispersal increases extinction risk in a tropical tree species due to pervasive negative density dependence across life stages. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142095.	1.2	93
21	Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages. PLoS ONE, 2014, 9, e88029.	1.1	24
22	How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3484-3489.	3.3	127
23	Natural History's Place in Science and Society. BioScience, 2014, 64, 300-310.	2.2	231
24	Assessing the effects of sodium on fire ant foraging in the field and colony growth in the laboratory. Ecological Entomology, 2014, 39, 267-271.	1.1	8
25	The importance of long-distance seed dispersal for the demography and distribution of a canopy tree species. Ecology, 2014, 95, 952-962.	1.5	44
26	Potential Negative Ecological Effects of Corridors. Conservation Biology, 2014, 28, 1178-1187.	2.4	76
27	Landscape corridors can increase invasion by an exotic species and reduce diversity of native species. Ecology, 2014, 95, 2033-2039.	1.5	69
28	Broader Impacts from an inside perspective. Frontiers in Ecology and the Environment, 2013, 11, 233-234.	1.9	4
29	Butterfly distribution in fragmented landscapes containing agroforestry practices in Southeastern Brazil. Agroforestry Systems, 2013, 87, 1321-1338.	0.9	25
30	Migration timing and wintering areas of three species of flycatchers (<i>Tyrannus</i>) breeding in the Great Plains of North America. Auk, 2013, 130, 247-257.	0.7	66
31	Long-distance bird migration within South America revealed by light-level geolocators. Auk, 2013, 130, 223-229.	0.7	49
32	When condition trumps location: seed consumption by fruitâ€eating birds removes pathogens and predator attractants. Ecology Letters, 2013, 16, 1031-1036.	3.0	57
33	Habitat patch shape, not corridors, determines herbivory and fruit production of an annual plant. Ecology, 2012, 93, 1016-1025.	1.5	20
34	Habitat corridors alter relative trophic position of fire ants. Ecosphere, 2012, 3, 1-9.	1.0	11
35	Why are not all chilies hot? A trade-off limits pungency. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2012-2017.	1.2	36
36	Patterns of partial avian migration in northern and southern temperate latitudes of the New World. Emu, 2012, 112, 17-22.	0.2	20

#	Article	IF	CITATIONS
37	Longâ€ŧerm patterns of fruit production in five forest types of the South Carolina upper coastal plain. Journal of Wildlife Management, 2012, 76, 1036-1046.	0.7	13
38	Seasonal differences in rainfall, food availability, and the foraging behavior of Tropical Kingbirds in the southern Amazon Basin. Journal of Field Ornithology, 2010, 81, 340-348.	0.3	32
39	Determinants of partial bird migration in the Amazon Basin. Journal of Animal Ecology, 2010, 79, 983-992.	1.3	81
40	Morphological and Genetic Variation Between Migratory and Non-migratory Tropical Kingbirds During Spring Migration in Central South America. Wilson Journal of Ornithology, 2010, 122, 236-243.	0.1	9
41	Recent advances in understanding migration systems of New World land birds. Ecological Monographs, 2010, 80, 3-48.	2.4	247
42	Squeezed at the top: Interspecific aggression may constrain elevational ranges in tropical birds. Ecology, 2010, 91, 1877-1884.	1.5	219
43	Dispersers shape fruit diversity in <i>Ficus</i> (Moraceae). Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14668-14672.	3.3	161
44	Urban mockingbirds quickly learn to identify individual humans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8959-8962.	3.3	98
45	Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9328-9332.	3.3	149
46	Modelling longâ€distance seed dispersal in heterogeneous landscapes. Journal of Ecology, 2008, 96, 599-608.	1.9	112
47	Effects of temperature and food on incubation behaviour of the northern mockingbird, Mimus polyglottos. Animal Behaviour, 2008, 76, 669-677.	0.8	49
48	COSTS AND BENEFITS OF CAPSAICIN-MEDIATED CONTROL OF GUT RETENTION IN DISPERSERS OF WILD CHILIES. Ecology, 2008, 89, 107-117.	1.5	59
49	The movement ecology and dynamics of plant communities in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19078-19083.	3.3	150
50	Evolutionary ecology of pungency in wild chilies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11808-11811.	3.3	152
51	Teaching Biodiversity to Students in Inner City & Studer-Resourced Schools. American Biology Teacher, 2007, 69, 473-476.	0.1	2
52	Fruit Production in Mature and Recently Regenerated Forests of the Appalachians. Journal of Wildlife Management, 2007, 71, 321-335.	0.7	30
53	The role of chromatic and achromatic signals for fruit detection by birds. Behavioral Ecology, 2006, 17, 784-789.	1.0	89
54	Corridors Increase Plant Species Richness at Large Scales. Science, 2006, 313, 1284-1286.	6.0	273

#	Article	IF	Citations
55	Seed predation, not seed dispersal, explains the landscape-level abundance of an early-successional plant. Journal of Ecology, 2006, 94, 838-845.	1.9	110
56	Where did the Chili Get its Spice? Biogeography of Capsaicinoid Production in Ancestral Wild Chili Species. Journal of Chemical Ecology, 2006, 32, 547-564.	0.9	64
57	A field test of the directed deterrence hypothesis in two species of wild chili. Oecologia, 2006, 150, 61-68.	0.9	91
58	Habitat corridors function as both drift fences and movement conduits for dispersing flies. Oecologia, 2005, 143, 645-651.	0.9	46
59	AN EXPERIMENTAL TEST OF WHETHER HABITAT CORRIDORS AFFECT POLLEN TRANSFER. Ecology, 2005, 86, 466-475.	1.5	100
60	Effects of Landscape Corridors on Seed Dispersal by Birds. Science, 2005, 309, 146-148.	6.0	287
61	Reflections Across Hemispheres: A System-Wide Approach to New World Bird Migration. Auk, 2004, 121, 1005-1013.	0.7	20
62	Contagious seed dispersal beneath heterospecific fruiting trees and its consequences. Oikos, 2004, 107, 303-308.	1.2	48
63	Use of dung as a tool by burrowing owls. Nature, 2004, 431, 39-39.	13.7	50
64	Cold temperature increases winter fruit removal rate of a bird-dispersed shrub. Oecologia, 2004, 139, 30-34.	0.9	34
65	Effects of dung and seed size on secondary dispersal, seed predation, and seedling establishment of rain forest trees. Oecologia, 2004, 139, 45-54.	0.9	128
66	REFLECTIONS ACROSS HEMISPHERES: A SYSTEM-WIDE APPROACH TO NEW WORLD BIRD MIGRATION. Auk, 2004, 121, 1005.	0.7	42
67	The Evolutionary Ecology of Ethanol Production and Alcoholism. Integrative and Comparative Biology, 2004, 44, 284-289.	0.9	45
68	Fruit Abundance and Local Distribution of Wintering Hermit Thrushes (Catharus Guttatus) and Yellow-Rumped Warblers (Dendroica Coronata) in South Carolina. Auk, 2004, 121, 46-57.	0.7	3
69	Wintering Yellow-Rumped Warblers (Dendroica Coronata) Track Manipulated Abundance of Myrica Cerifera Fruits. Auk, 2004, 121, 74-87.	0.7	7
70	Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia, 2003, 135, 516-523.	0.9	306
71	DO FRUGIVORES RESPOND TO FRUIT HARVEST? AN EXPERIMENTAL STUDY OF SHORT-TERM RESPONSES. Ecology, 2003, 84, 2600-2612.	1.5	113
72	CORRIDOR USE BY DIVERSE TAXA. Ecology, 2003, 84, 609-615.	1.5	324

#	Article	IF	CITATIONS
73	Effects of prescribed fire on an ant community in Florida pine savanna. Ecological Entomology, 2003, 28, 439-448.	1.1	30
74	SPATIAL ECOLOGY OF PREDATOR–PREY INTERACTIONS: CORRIDORS AND PATCH SHAPE INFLUENCE SEED PREDATION. Ecology, 2003, 84, 2589-2599.	1.5	81
7 5	Corridors affect plants, animals, and their interactions in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12923-12926.	3.3	449
76	Spatial and temporal variation in fruit use by wildlife in a forested landscape. Forest Ecology and Management, 2002, 164, 277-291.	1.4	77
77	Prospects for conserving biodiversity in Amazonian extractive reserves. Ecology Letters, 2002, 5, 320-324.	3.0	54
78	Protein Requirements of a Specialized Frugivore, Pesquet's Parrot (Psittrichas fulgidus). Auk, 2001, 118, 1080-1088.	0.7	37
79	It Takes Guts (and More) to Eat Fruit: Lessons From Avian Nutritional Ecology. Auk, 2001, 118, 819-831.	0.7	141
80	Title is missing!. Biological Invasions, 2001, 3, 363-372.	1.2	77
81	It Takes Guts (And More) to Eat Fruit: Lessons from Avian Nutritional Ecology. Auk, 2001, 118, 819-831.	0.7	15
82	Protein Requirements of a Specialized Frugivore, Pesquet's Parrot (Psittrichas fulgidus). Auk, 2001, 118, 1080-1088.	0.7	5
83	Conversion of Nitrogen to Protein and Amino Acids in Wild Fruits. Journal of Chemical Ecology, 2000, 26, 1749-1763.	0.9	50
84	A SIMPLE METHOD FOR TRACKING VERTEBRATE-DISPERSED SEEDS. Ecology, 2000, 81, 267-274.	1.5	33
85	Test, Rejection, and Reformulation of a Chemical Reactor–Based Model of Gut Function in a Fruitâ€Eating Bird. Physiological and Biochemical Zoology, 1999, 72, 369-383.	0.6	65
86	A Glycoalkaloid in Ripe Fruit Deters Consumption by Cedar Waxwings. Auk, 1998, 115, 359-367.	0.7	51
87	CONTROL OF GUT RETENTION TIME BY SECONDARY METABOLITES IN RIPESOLANUMFRUITS. Ecology, 1998, 79, 2309-2319.	1.5	47
88	WHY ARE SOME FRUITS TOXIC? GLYCOALKALOIDS INSOLANUMAND FRUIT CHOICE BY VERTEBRATES. Ecology, 1997, 78, 782-798.	1.5	95
89	ANTIFUNGAL ACTIVITY OFSOLANUMFRUIT GLYCOALKALOIDS: IMPLICATIONS FOR FRUGIVORY AND SEED DISPERSAL. Ecology, 1997, 78, 799-809.	1.5	79

An evaluation of vertebrate seed dispersal syndromes in four species of black nightshade (Solanum) Tj ETQq0 0 0 rg BT/Overlook 10 Tf 5 and 10 Tf 5 an

6

90

#	Article	IF	Citations
91	Why We Should Adopt a Broader View of Neotropical Migrants. Auk, 1994, 111, 233-236.	0.7	23
92	Gut Passage of Insects by European Starlings and Comparison with Other Species. Auk, 1994, 111, 478-481.	0.7	62
93	Complex Ant-Plant Interactions: Rain-Forest Ants as Secondary Dispersers and Post-Dispersal Seed Predators. Ecology, 1993, 74, 1802-1812.	1.5	213
94	Evolutionary Precursors of Long-Distance Migration: Resource Availability and Movement Patterns in Neotropical Landbirds. American Naturalist, 1992, 140, 447-476.	1.0	320
95	How Do Frugivores Process Fruit? Gastrointestinal Transit and Glucose Absorption in Cedar Waxwings (Bombycilla cedrorum). Auk, 1992, 109, 722-730.	0.7	63
96	Why some fruits are green when they are ripe: carbon balance in fleshy fruits. Oecologia, 1991, 88, 371-377.	0.9	50
97	Evolutionary Implications of Fruit-Processing Limitations in Cedar Waxwings. American Naturalist, 1991, 138, 171-189.	1.0	101
98	Digestive System Trade-offs and Adaptations of Frugivorous Passerine Birds. Physiological Zoology, 1990, 63, 1248-1270.	1.5	135
99	Habitat-dependent fruiting behaviour of an understorey tree, <i>Miconia centrodesma </i> , and tropical treefall gaps as keystone habitats for frugivores in Costa Rica. Journal of Tropical Ecology, 1990, 6, 409-420.	0.5	67
100	Arrival and Survival in Tropical Treefall Gaps. Ecology, 1989, 70, 562-564.	1.5	240
101	Tropical Wet Forest Treefall Gaps and Distributions of Understory Birds and Plants. Ecology, 1988, 69, 1076-1089.	1.5	242
102	Spatial and Temporal Variation in Costa Rican Fruit and Fruitâ€Eating Bird Abundance. Ecological Monographs, 1988, 58, 251-269.	2.4	363
103	Seed Size and Fruit-Handling Techniques of Avian Frugivores. American Naturalist, 1987, 129, 471-485.	1.0	309
104	Sugar-Tasting Ability and Fruit Selection in Tropical Fruit-Eating Birds. Auk, 1987, 104, 173-179.	0.7	88
105	Fruit Choice in Neotropical Birds: The Effect of Distance Between Fruits on Preference Patterns. Ecology, 1984, 65, 844-850.	1.5	113