Jennifer D Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6666416/publications.pdf

Version: 2024-02-01

82 papers 6,047 citations

36 h-index 61 g-index

84 all docs 84 docs citations

84 times ranked 8035 citing authors

#	Article	IF	CITATIONS
1	Targeting metabolism to potentiate NK cell-based therapies. , 2021, , 369-386.		О
2	NK cell-based cancer immunotherapy: from basic biology to clinical development. Journal of Hematology and Oncology, 2021, 14, 7.	17.0	312
3	Plasma cells are enriched in localized prostate cancer in Black men and are associated with improved outcomes. Nature Communications, 2021, 12, 935.	12.8	56
4	Preinvasive Colorectal Lesions of African Americans Display an Immunosuppressive Signature Compared to Caucasian Americans. Frontiers in Oncology, 2021, 11, 659036.	2.8	2
5	Inflammatory bowel disease induces inflammatory and pre-neoplastic changes in the prostate. Prostate Cancer and Prostatic Diseases, 2021, , .	3.9	7
6	Neutrophils Alter DNA Repair Landscape to Impact Survival and Shape Distinct Therapeutic Phenotypes of Colorectal Cancer. Gastroenterology, 2021, 161, 225-238.e15.	1.3	17
7	Tumor-derived NKG2D ligand sMIC reprograms NK cells to an inflammatory phenotype through CBM signalosome activation. Communications Biology, 2021, 4, 905.	4.4	10
8	Immune Responses Vary in Preinvasive Colorectal Lesions by Tumor Location and Histology. Cancer Prevention Research, 2021, 14, 885-892.	1.5	3
9	Direct N-Glycosylation Profiling of Urine and Prostatic Fluid Glycoproteins and Extracellular Vesicles. Frontiers in Chemistry, 2021, 9, 734280.	3.6	17
10	Tumor Cell IDO Enhances Immune Suppression and Decreases Survival Independent of Tryptophan Metabolism in Glioblastoma. Clinical Cancer Research, 2021, 27, 6514-6528.	7.0	48
11	Glioblastoma as an age-related neurological disorder in adults. Neuro-Oncology Advances, 2021, 3, vdab125.	0.7	30
12	Could Harnessing Natural Killer Cell Activity Be a Promising Therapy for Prostate Cancer?. Critical Reviews in Immunology, 2021, 41, 101-106.	0.5	5
13	Assessing quality and agreement of structured data in automatic versus manual abstraction of the electronic health record for a clinical epidemiology study. Research Methods in Medicine & Health Sciences, 2021, 2, 168-178.	1.2	3
14	IMMU-12. TUMOR CELL IDO ENHANCES IMMUNE SUPPRESSION AND DECREASES SURVIVAL INDEPENDENT OF TRYPTOPHAN METABOLISM IN GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi94-vi94.	1.2	1
15	How else can we approach prostate cancer biomarker discovery?. Expert Review of Molecular Diagnostics, 2020, 20, 123-125.	3.1	8
16	Targeting CD73 to augment cancer immunotherapy. Current Opinion in Pharmacology, 2020, 53, 66-76.	3.5	77
17	Association between inflammatory bowel disease and prostate cancer: A largeâ€scale, prospective, populationâ€based study. International Journal of Cancer, 2020, 147, 2735-2742.	5.1	28
18	Antibody targeting tumor-derived soluble NKG2D ligand sMIC reprograms NK cell homeostatic survival and function and enhances melanoma response to PDL1 blockade therapy. Journal of Hematology and Oncology, 2020, 13, 74.	17.0	17

#	Article	IF	Citations
19	Advanced Age Increases Immunosuppression in the Brain and Decreases Immunotherapeutic Efficacy in Subjects with Glioblastoma. Clinical Cancer Research, 2020, 26, 5232-5245.	7.0	52
20	Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Frontiers in Immunology, 2020, 11, 1185.	4.8	131
21	PD59-06â€∱INFLAMMATORY-BOWEL-DISEASE IS ASSOCIATED TUMOR-INFILTRATING CD8 AND CD20 LYMPHOCYTES IN PROSTATE CANCER. Journal of Urology, 2020, 203, .	0.4	O
22	MP16-19 MODELING THE IMPACT OF INFLAMMATORY BOWEL DISEASE ON PROSTATE CANCER RISK IN MICE: PRELIMINARY RESULTS OF AN ONGOING STUDY. Journal of Urology, 2020, 203, .	0.4	0
23	Abstract A77: Antibody targeting tumor-derived soluble NKG2D ligand sMIC provides dual costimulation of CD8 T cells and enables sMIC+ tumors to respond to PD1/PD-L1 blockade therapy. , 2020, , .		O
24	MP64-19â€fASSOCIATION BETWEEN INFLAMMATORY BOWEL DISEASE AND PROSTATE CANCER WITH COLORECTAL CANCER AS A COMPARATOR: A PROSPECTIVE, POPULATION-BASED STUDY. Journal of Urology, 2020, 203, .	0.4	0
25	CD73: an emerging checkpoint for cancer immunotherapy. Immunotherapy, 2019, 11, 983-997.	2.0	74
26	Antibody targeting tumor-derived soluble NKG2D ligand sMIC provides dual co-stimulation of CD8 T cells and enables sMIC+ tumors respond to PD1/PD-L1 blockade therapy., 2019, 7, 223.		23
27	NK Cell Plasticity in Cancer. Journal of Clinical Medicine, 2019, 8, 1492.	2.4	25
28	Past, Current, and Future of Immunotherapies for Prostate Cancer. Frontiers in Oncology, 2019, 9, 884.	2.8	89
29	The Coincidence Between Increasing Age, Immunosuppression, and the Incidence of Patients With Glioblastoma. Frontiers in Pharmacology, 2019, 10, 200.	3.5	82
30	Commentary: preclinical efficacy of immune-checkpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma by Garg et al. (2017). Oncolmmunology, 2019, 8, 1548242.	4.6	1
31	Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight, 2019, 4, .	5.0	90
32	Abstract LB-014: Antibody targeting soluble NKG2D ligand sMIC sensitizes metastatic prostate tumor and other MIC+tumors to PD1/PD-L1 blockade therapy in pre-clinical models., 2019,,.		1
33	Abstract LB-014: Antibody targeting soluble NKG2D ligand sMIC sensitizes metastatic prostate tumor and other MIC ⁺ tumors to PD1/PD-L1 blockade therapy in pre-clinical models., 2019, , .		O
34	NKG2D and its ligands in cancer. Current Opinion in Immunology, 2018, 51, 55-61.	5.5	143
35	CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response. Cell Metabolism, 2018, 27, 85-100.e8.	16.2	197
36	Tumor-Infiltrating Lymphocytes and Colorectal Cancer Survival in African American and Caucasian Patients. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 755-761.	2.5	22

#	Article	IF	Citations
37	Abstract 3802: Human NKG2D ligand regulation of Natural Killer cell function and its implications in cancer and inflammation. , 2018 , , .		0
38	Racial Differences in Stage IV Colorectal Cancer Survival in Younger and Older Patients. Clinical Colorectal Cancer, 2017, 16, 178-186.	2.3	25
39	Pathological Role of Anti-CD4 Antibodies in HIV-Infected Immunologic Nonresponders Receiving Virus-Suppressive Antiretroviral Therapy. Journal of Infectious Diseases, 2017, 216, 82-91.	4.0	20
40	Antibody-mediated neutralization of soluble MIC significantly enhances CTLA4 blockade therapy. Science Advances, 2017, 3, e1602133.	10.3	27
41	Prostate-specific IL-6 transgene autonomously induce prostate neoplasm through amplifying inflammation in the prostate and peri-prostatic adipose tissue. Journal of Hematology and Oncology, 2017, 10, 14.	17.0	19
42	Abstract A34: Beyond immune checkpoint: First-in-class antibody targeting soluble NKG2D ligand sMIC for cancer immunotherapy. , 2017, , .		0
43	Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC. Oncotarget, 2016, 7, 814-830.	1.8	17
44	Surface Expression of TGF \hat{l}^2 Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer. Cancer Research, 2016, 76, 7106-7117.	0.9	76
45	The CXCL8-CXCR1/2 pathways in cancer. Cytokine and Growth Factor Reviews, 2016, 31, 61-71.	7.2	471
46	The expression profile and clinic significance of the SIX family in non-small cell lung cancer. Journal of Hematology and Oncology, 2016, 9, 119.	17.0	57
47	Antibody targeting soluble NKG2D ligand sMIC refuels and invigorates the endogenous immune system to fight cancer. Oncolmmunology, 2016, 5, e1095434.	4.6	11
48	Abstract A053: Therapy with a non-blocking monoclonal antibody targeting soluble NKG2D ligand MIC revamps endogenous innate and adaptive anti-tumor responses and eliminates primary and metastatic tumors. , 2016 , , .		0
49	Abstract B024: First-in-class antibody targeting soluble NKG2D ligand sMIC to enhance checkpoint cancer immunotherapy. , 2016, , .		0
50	NKG2D Ligands in Tumor Immunity: Two Sides of a Coin. Frontiers in Immunology, 2015, 6, 97.	4.8	122
51	Nonblocking Monoclonal Antibody Targeting Soluble MIC Revamps Endogenous Innate and Adaptive Antitumor Responses and Eliminates Primary and Metastatic Tumors. Clinical Cancer Research, 2015, 21, 4819-4830.	7.0	39
52	Soluble NKG2D ligand promotes MDSC expansion and skews macrophage to the alternatively activated phenotype. Journal of Hematology and Oncology, 2015, 8, 13.	17.0	44
53	Abstract 2468: Antibody targeting soluble NKG2D ligand sMIC induces regression of primary tumors and eliminates metastasis in multiple pre-clinical cancer models. , 2015, , .		0
54	Insulin-like growth factor receptor-1 (IGF-IR) as a target for prostate cancer therapy. Cancer and Metastasis Reviews, 2014, 33, 607-617.	5.9	38

#	Article	IF	CITATIONS
55	Proliferation and enrichment of CD133+ glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds. Biomaterials, 2014, 35, 9137-9143.	11.4	105
56	Immune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis. Cancer Research, 2014, 74, 446-459.	0.9	56
57	NKG2D Ligands in Cancer Immunotherapy: Target or Not?. , 2014, 1, 2.		4
58	IL-15 Agonists: The Cancer Cure Cytokine. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2013, 07, 85.	0.1	19
59	Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. Journal of Clinical Investigation, 2013, 123, 4410-4422.	8.2	95
60	3D Porous Chitosan–Alginate Scaffolds: A New Matrix for Studying Prostate Cancer Cell–Lymphocyte Interactions In Vitro. Advanced Healthcare Materials, 2012, 1, 590-599.	7.6	76
61	Abstract 321: IL-6 in the tissue microenvironment plays a direct role in normal prostatic neoplastic transformation., 2012,,.		1
62	Abstract LB-16: DACH1 inhibited prostate cancer cellular proliferation and interleukin-6 signaling. , 2012, , .		0
63	Dihydrotestosterone Administration Does Not Increase Intraprostatic Androgen Concentrations or Alter Prostate Androgen Action in Healthy Men: A Randomized-Controlled Trial. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 430-437.	3.6	64
64	Abstract A21: DACH1 blocks prostate cancer cell growth and interleukin-6 signaling., 2011,,.		0
65	Chitosan-Alginate Scaffold Culture System for Hepatocellular Carcinoma Increases Malignancy and Drug Resistance. Pharmaceutical Research, 2010, 27, 1939-1948.	3.5	86
66	Cutting Edge: The Membrane Type Matrix Metalloproteinase MMP14 Mediates Constitutive Shedding of MHC Class I Chain-Related Molecule A Independent of A Disintegrin and Metalloproteinases. Journal of Immunology, 2010, 184, 3346-3350.	0.8	122
67	Abstract LB-373: Elucidation of the mechanisms involved in IL-6 induced cell transformation in prostate cancer. , $2010, \dots$		0
68	Abstract 3808: Impact of MIC expression and shedding on prostate tumor development and progression in double transgenic TRAMP-MIC mouse models. , 2010, , .		0
69	Obstructing Shedding of the Immunostimulatory MHC Class I Chain–Related Gene B Prevents Tumor Formation. Clinical Cancer Research, 2009, 15, 632-640.	7.0	53
70	Transforming Growth Factor-β–Stimulated Clone-22 Is an Androgen-Regulated Gene That Enhances Apoptosis in Prostate Cancer following Insulin-Like Growth Factor-I Receptor Inhibition. Clinical Cancer Research, 2009, 15, 7634-7641.	7.0	9
71	An six-amino acid motif in the $\hat{l}\pm 3$ domain of MICA is the cancer therapeutic target to inhibit shedding. Biochemical and Biophysical Research Communications, 2009, 387, 476-481.	2.1	32
72	Oxidative DNA Damage in the Prostate May Predispose Men to a Higher Risk of Prostate Cancer. Translational Oncology, 2009, 2, 39-45.	3.7	13

#	Article	IF	CITATIONS
73	An Antibody Targeting the Type I Insulin-like Growth Factor Receptor Enhances the Castration-Induced Response in Androgen-Dependent Prostate Cancer. Clinical Cancer Research, 2007, 13, 6429-6439.	7.0	58
74	Interaction of IGF signaling and the androgen receptor in prostate cancer progression. Journal of Cellular Biochemistry, 2006, 99, 392-401.	2.6	161
75	Combined In vivo Effect of A12, a Type 1 Insulin-Like Growth Factor Receptor Antibody, and Docetaxel against Prostate Cancer Tumors. Clinical Cancer Research, 2006, 12, 6153-6160.	7.0	84
76	Effect of medical castration on CD4 ⁺ CD25 ⁺ T cells, CD8 ⁺ T cell IFN-γ expression, and NK cells: a physiological role for testosterone and/or its metabolites. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E856-E863.	3.5	144
77	<i>In vivo</i> Effects of the Human Type I Insulin-Like Growth Factor Receptor Antibody A12 on Androgen-Dependent and Androgen-Independent Xenograft Human Prostate Tumors. Clinical Cancer Research, 2005, 11, 3065-3074.	7.0	162
78	Prevalent expression of the immunostimulatory MHC class I chain–related molecule is counteracted by shedding in prostate cancer. Journal of Clinical Investigation, 2004, 114, 560-568.	8.2	241
79	Prevalent expression of the immunostimulatory MHC class I chain–related molecule is counteracted by shedding in prostate cancer. Journal of Clinical Investigation, 2004, 114, 560-568.	8.2	158
80	Intracellular Retention of the MHC Class I-Related Chain B Ligand of NKG2D by the Human Cytomegalovirus UL16 Glycoprotein. Journal of Immunology, 2003, 170, 4196-4200.	0.8	127
81	T Cell Antigen Receptor Engagement and Specificity in the Recognition of Stress-Inducible MHC Class I-Related Chains by Human Epithelial γδT Cells. Journal of Immunology, 2002, 169, 1236-1240.	0.8	231
82	Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature, 2002, 419, 734-738.	27.8	1,408