Anuj Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6665464/publications.pdf

Version: 2024-02-01

48 papers

2,448 citations

304743

22

h-index

223800 46 g-index

48 all docs 48 docs citations

48 times ranked

2780 citing authors

#	Article	IF	CITATIONS
1	Subcellular localization of the yeast proteome. Genes and Development, 2002, 16, 707-719.	5.9	667
2	Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature, 1999, 402, 413-418.	27.8	521
3	Large-Scale Analysis of Yeast Filamentous Growth by Systematic Gene Disruption and Overexpression. Molecular Biology of the Cell, 2008, 19, 284-296.	2.1	118
4	An integrated approach for finding overlooked genes in yeast. Nature Biotechnology, 2002, 20, 58-63.	17. 5	112
5	Emerging technologies in yeast genomics. Nature Reviews Genetics, 2001, 2, 302-312.	16.3	96
6	A novel mitochondrial protein, Tar1p, is encoded on the antisense strand of the nuclear 25S rDNA. Genes and Development, 2002, 16, 2755-2760.	5.9	67
7	An Overview of Nested Genes in Eukaryotic Genomes. Eukaryotic Cell, 2009, 8, 1321-1329.	3.4	59
8	TEAK: Topology Enrichment Analysis framework for detecting activated biological subpathways. Nucleic Acids Research, 2013, 41, 1425-1437.	14.5	59
9	Large-Scale Mutagenesis of the Yeast Genome Using a Tn7-Derived Multipurpose Transposon. Genome Research, 2004, 14, 1975-1986.	5.5	52
10	Analysis of the Yeast Kinome Reveals a Network of Regulated Protein Localization during Filamentous Growth. Molecular Biology of the Cell, 2008, 19, 2708-2717.	2.1	50
11	A Large-Scale Complex Haploinsufficiency-Based Genetic Interaction Screen in Candida albicans: Analysis of the RAM Network during Morphogenesis. PLoS Genetics, 2011, 7, e1002058.	3.5	46
12	Genetic Networks Inducing Invasive Growth in <i>Saccharomyces cerevisiae</i> Identified Through Systematic Genome-Wide Overexpression. Genetics, 2013, 193, 1297-1310.	2.9	44
13	The TRIPLES database: a community resource for yeast molecular biology. Nucleic Acids Research, 2002, 30, 73-75.	14.5	40
14	An Interrelationship Between Autophagy and Filamentous Growth in Budding Yeast. Genetics, 2007, 177, 205-214.	2.9	36
15	[33] High-throughput methods for the large-scale analysis of gene function by transposon tagging. Methods in Enzymology, 2000, 328, 550-574.	1.0	34
16	A Profile of Differentially Abundant Proteins at the Yeast Cell Periphery during Pseudohyphal Growth. Journal of Biological Chemistry, 2010, 285, 15476-15488.	3.4	32
17	A small moleculeâ€directed approach to control protein localization and function. Yeast, 2008, 25, 577-594.	1.7	31
18	An Overview of Autophagy and Yeast Pseudohyphal Growth: Integration of Signaling Pathways during Nitrogen Stress. Cells, 2012, 1, 263-283.	4.1	28

#	Article	IF	CITATIONS
19	The Yeast Sks1p Kinase Signaling Network Regulates Pseudohyphal Growth and Glucose Response. PLoS Genetics, 2014, 10, e1004183.	3.5	28
20	Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization. Nature Protocols, 2010, 5, 1831-1843.	12.0	25
21	Pooled Segregant Sequencing Reveals Genetic Determinants of Yeast Pseudohyphal Growth. PLoS Genetics, 2014, 10, e1004570.	3.5	24
22	Large-Scale Analysis of Kinase Signaling in Yeast Pseudohyphal Development Identifies Regulation of Ribonucleoprotein Granules. PLoS Genetics, 2015, 11, e1005564.	3.5	24
23	Insertional mutagenesis: Transposon-insertion libraries as mutagens in yeast. Methods in Enzymology, 2002, 350, 219-229.	1.0	22
24	Filamentation Regulatory Pathways Control Adhesion-Dependent Surface Responses in Yeast. Genetics, 2019, 212, 667-690.	2.9	20
25	Teaching Systems Biology: An Active-learning Approach. CBE: Life Sciences Education, 2005, 4, 323-329.	0.7	19
26	Genomic analysis of insertion behavior and target specificity of mini-Tn7 and Tn3 transposons in Saccharomyces cerevisiae. Nucleic Acids Research, 2006, 34, e57-e57.	14.5	17
27	Unconventional Genomic Architecture in the Budding Yeast <i>Saccharomyces cerevisiae</i> Masks the Nested Antisense Gene <i>NAG1</i> Eukaryotic Cell, 2008, 7, 1289-1298.	3.4	17
28	Genome-Wide Transposon Mutagenesis in Saccharomyces cerevisiae and Candida albicans. Methods in Molecular Biology, 2011, 765, 207-224.	0.9	15
29	Inositol polyphosphates regulate and predict yeast pseudohyphal growth phenotypes. PLoS Genetics, 2018, 14, e1007493.	3.5	15
30	The Complex Genetic Basis and Multilayered Regulatory Control of Yeast Pseudohyphal Growth. Annual Review of Genetics, 2021, 55, 1-21.	7.6	15
31	Overexpression of Autophagy-Related Genes Inhibits Yeast Filamentous Growth. Autophagy, 2007, 3, 604-609.	9.1	12
32	Localization of autophagy-related proteins in yeast using a versatile plasmid-based resource of fluorescent protein fusions. Autophagy, 2008, 4, 792-800.	9.1	11
33	Genome-Wide Screen for <i> Saccharomyces cerevisiae </i> Genes Contributing to Opportunistic Pathogenicity in an Invertebrate Model Host. G3: Genes, Genomes, Genetics, 2018, 8, 63-78.	1.8	11
34	Jump around: transposons in and out of the laboratory. F1000Research, 2020, 9, 135.	1.6	10
35	Conditional Nuclear Import and Export of Yeast Proteins Using a Chemical Inducer of Dimerization. Cell Biochemistry and Biophysics, 2009, 53, 127-134.	1.8	9
36	Mutant power: using mutant allele collections for yeast functional genomics. Briefings in Functional Genomics, 2016, 15, 75-84.	2.7	9

#	Article	IF	CITATIONS
37	Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth. Current Genetics, 2019, 65, 119-125.	1.7	7
38	Genome-Wide Synthetic Genetic Screening by Transposon Mutagenesis in Candida albicans. Methods in Molecular Biology, 2015, 1279, 125-135.	0.9	7
39	Multipurpose Transposon-Insertion Libraries in Yeast. Cold Spring Harbor Protocols, 2016, 2016, pdb.top080259.	0.3	6
40	Using Interactive Data Visualizations for Exploratory Analysis in Undergraduate Genomics Coursework: Field Study Findings and Guidelines. Journal of Science Education and Technology, 2016, 25, 91-110.	3.9	6
41	A Stress-Responsive Signaling Network Regulating Pseudohyphal Growth and Ribonucleoprotein Granule Abundance in <i>Saccharomyces cerevisiae</i> . Genetics, 2019, 213, 705-720.	2.9	6
42	Multipurpose Transposon Insertion Libraries for Large-Scale Analysis of Gene Function in Yeast. Methods in Molecular Biology, 2008, 416, 117-129.	0.9	6
43	A Systems Biology Approach to Learning Autophagy. Autophagy, 2006, 2, 12-23.	9.1	5
44	Using Yeast Transposon-Insertion Libraries for Phenotypic Screening and Protein Localization. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot085217.	0.3	5
45	Where do all the proteins go?. Targets, 2003, 2, 237-244.	0.3	3
46	An integrated web interface for large-scale characterization of sequence data. Functional and Integrative Genomics, 2000, 1, 70-75.	3.5	2
47	Computational Methods and Bioinformatic Tools. , 0, , 769-904.		0
48	Mapping paths: new approaches to dissect eukaryotic signaling circuitry. F1000Research, 2016, 5, 1853.	1.6	0