Peter W Clinton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6664590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COMMUNITY STRUCTURE AND FOREST INVASION BY AN EXOTIC HERB OVER 23 YEARS. Ecology, 1998, 79, 2071-2081.	3.2	184
2	Technological options for the management of biosolids. Environmental Science and Pollution Research, 2008, 15, 308-317.	5.3	175
3	Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Forest Ecology and Management, 2004, 187, 197-211.	3.2	140
4	Climate cues and resources interact to determine seed production by a masting species. Journal of Ecology, 2011, 99, 870-877.	4.0	102
5	Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat. FEMS Microbiology Ecology, 2013, 83, 568-584.	2.7	81
6	Carbon storage along a stand development sequence in a New Zealand Nothofagus forest. Forest Ecology and Management, 2003, 177, 313-321.	3.2	75
7	Modelling the influence of stand structural, edaphic and climatic influences on juvenile Pinus radiata dynamic modulus of elasticity. Forest Ecology and Management, 2006, 229, 136-144.	3.2	61
8	Host Genotype and Nitrogen Form Shape the Root Microbiome of Pinus radiata. Microbial Ecology, 2018, 75, 419-433.	2.8	58
9	Long-term nitrogen additions increased surface soil carbon concentration in a forest plantation despite elevated decomposition. Soil Biology and Biochemistry, 2011, 43, 302-307.	8.8	56
10	Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biology and Biochemistry, 2011, 43, 1341-1349.	8.8	54
11	The influence of logs on the spatial distribution of litter-dwelling invertebrates and forest floor processes in New Zealand forests. Forest Ecology and Management, 2003, 184, 251-262.	3.2	52
12	Aquaporin regulation in roots controls plant hydraulic conductance, stomatal conductance, and leaf water potential in <scp><i>Pinus radiata</i></scp> under water stress. Plant, Cell and Environment, 2019, 42, 717-729.	5.7	51
13	The influence of nitrogen and phosphorus supply and genotype on mesophyll conductance limitations to photosynthesis in Pinus radiata. Tree Physiology, 2009, 29, 1143-1151.	3.1	50
14	Phenotyping Whole Forests Will Help to Track Genetic Performance. Trends in Plant Science, 2018, 23, 854-864.	8.8	50
15	Biomass and macro-nutrients (above- and below-ground) in a New Zealand beech (Nothofagus) forest ecosystem: implications for carbon storage and sustainable forest management. Forest Ecology and Management, 2003, 174, 281-294.	3.2	48
16	Decomposition and nutrient dynamics of green and freshly fallen radiata pine (Pinus radiata) needles. Forest Ecology and Management, 2003, 179, 169-181.	3.2	47
17	Factors impacting on pharmaceutical leaching following sewage application to land. Chemosphere, 2009, 74, 537-542.	8.2	47
18	Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland site. Forest Ecology and Management, 2003, 184, 93-104.	3.2	46

#	Article	IF	CITATIONS
19	Soil carbon protection in podocarp/hardwood forest, and effects of conversion to pasture and exotic pine forest. Environmental Pollution, 2002, 116, S63-S73.	7.5	44
20	Composition and diversity of fungi on decaying logs in a New Zealand temperate beech (<i>Nothofagus</i>) forest. Canadian Journal of Forest Research, 2000, 30, 1025-1033.	1.7	42
21	Nitrogen storage and availability during stand development in a New Zealand Nothofagus forest. Canadian Journal of Forest Research, 2002, 32, 344-352.	1.7	42
22	Defining sustainability of plantation forests through identification of site quality indicators influencing productivity—A national view for New Zealand. Forest Ecology and Management, 2005, 216, 51-63.	3.2	42
23	Resilience achieved via multiple compensating subsystems: The immediate impacts of COVID-19 control measures on the agri-food systems of Australia and New Zealand. Agricultural Systems, 2021, 187, 103025.	6.1	40
24	The Role of Microbial Communities in the Formation and Decomposition of Soil Organic Matter. , 2010, , 81-118.		38
25	Post-harvest residue management effects on recalcitrant carbon pools and plant biomarkers within the soil heavy fraction in Pinus radiata plantations. Soil Biology and Biochemistry, 2011, 43, 404-412.	8.8	34
26	The influence of N addition on nutrient content, leaf carbon isotope ratio, and productivity in a Nothofagus forest during stand development. Canadian Journal of Forest Research, 2004, 34, 2037-2048.	1.7	33
27	Identification of key soil indicators influencing plantation productivity and sustainability across a national trial series in New Zealand. Forest Ecology and Management, 2008, 256, 180-190.	3.2	33
28	Modelling the influence of site and weed competition on juvenile modulus of elasticity in Pinus radiata across broad environmental gradients. Forest Ecology and Management, 2009, 258, 1479-1488.	3.2	33
29	Influence of ammonium and nitrate supply on growth, dry matter partitioning, N uptake and photosynthetic capacity of Pinus radiata seedlings. Trees - Structure and Function, 2010, 24, 1097-1107.	1.9	32
30	Postharvest organic matter removal effects on FH layer and mineral soil characteristics in four New Zealand Pinus radiata plantations. Forest Ecology and Management, 2008, 256, 558-563.	3.2	31
31	Partititioning concurrent influences of nitrogen and phosphorus supply on photosynthetic model parameters of Pinus radiata. Tree Physiology, 2007, 27, 335-344.	3.1	30
32	Impacts of plantation forest management on soil organic matter quality. Journal of Soils and Sediments, 2011, 11, 1309-1316.	3.0	30
33	Designing future dairy systems for New Zealand using reflexive interactive design. Agricultural Systems, 2020, 181, 102818.	6.1	30
34	Transpiration rates and canopy conductance of Pinus radiata growing with different pasture understories in agroforestry systems. Tree Physiology, 1998, 18, 575-582.	3.1	28
35	Decomposition of <i>Nothofagus</i> wood in vitro and nutrient mobilization by fungi. Canadian Journal of Forest Research, 2009, 39, 2193-2202.	1.7	28
36	Deadwood in New Zealand's indigenous forests. Forest Ecology and Management, 2009, 258, 2456-2466.	3.2	28

#	Article	IF	CITATIONS
37	Intraspecific changes in forest canopy allometries during selfâ€ŧhinning. Functional Ecology, 2008, 22, 460-469.	3.6	24
38	Forms of soil phosphorus affected by stand development of mountain beech (Nothofagus) forests in New Zealand. Geoderma, 2010, 157, 228-234.	5.1	23
39	Survival ofEscherichia coliandSalmonellaspp. after application of sewage sludge to aPinus radiataforest. Journal of Applied Microbiology, 2007, 103, 1321-1331.	3.1	22
40	Nitrogen fertiliser effects on litter fall, FH layer and mineral soil characteristics in New Zealand Pinus radiata plantations. Forest Ecology and Management, 2008, 256, 564-569.	3.2	21
41	Biodegradation of Soluble Organic Matter as Affected by Land-Use and Soil Depth. Soil Science Society of America Journal, 2012, 76, 1667-1677.	2.2	21
42	Soil extractable organic C and N contents, methanotrophic activity under warming and degradation in a Tibetan alpine meadow. Agriculture, Ecosystems and Environment, 2019, 278, 6-14.	5.3	21
43	Composition and diversity of fungi on decaying logs in a New Zealand temperate beech (<i>Nothofagus</i>) forest. Canadian Journal of Forest Research, 2000, 30, 1025-1033.	1.7	21
44	Modelling Environmental Variation in Young's Modulus for Pinus radiata and Implications for Determination of Critical Buckling Height. Annals of Botany, 2006, 98, 765-775.	2.9	20
45	Soil quality relationships with tree growth in exotic forests in New Zealand. Forest Ecology and Management, 2009, 258, 2326-2334.	3.2	20
46	Effects of mixing radiata pine needles and understory litters on decomposition and nutrients release. Biology and Fertility of Soils, 2005, 41, 310-319.	4.3	19
47	Relationships between soil and foliar nutrients in young densely planted mini-plots of Pinus radiata and Cupressus lusitanica. Forest Ecology and Management, 2007, 240, 122-130.	3.2	18
48	Plantation management induces long-term alterations to bacterial phytohormone production and activity in bulk soil. Applied Soil Ecology, 2010, 45, 310-314.	4.3	18
49	Biomass and morphology of Pinus radiata coarse root components in a sub-humid temperate silvopastoral system. Forest Ecology and Management, 2003, 177, 387-397.	3.2	17
50	Genetic parameters and clone by environment interactions for growth and foliar nutrient concentrations in radiata pine on 14 widely diverse New Zealand sites. Tree Genetics and Genomes, 2015, 11, 1.	1.6	17
51	Nutrient composition of epigeous fungal sporocarps growing on different substrates in a New Zealand mountain beech forest. New Zealand Journal of Botany, 1999, 37, 149-153.	1.1	16
52	Modelling the influence of stand structural, edaphic and climatic influences on juvenile Pinus radiata fibre length. Forest Ecology and Management, 2008, 254, 166-177.	3.2	16
53	The influence of N and P supply and genotype on carbon flux and partitioning in potted Pinus radiata plants. Tree Physiology, 2009, 29, 857-868.	3.1	16
54	Modelling the influence of environment and stand characteristics on basic density and modulus of elasticity for young Pinus radiata and Cupressus lusitanica. Forest Ecology and Management, 2008, 255, 1023-1033.	3.2	15

#	Article	IF	CITATIONS
55	Influence of sewage and pharmaceuticals on soil microbial function. Environmental Toxicology and Chemistry, 2011, 30, 1086-1095.	4.3	15
56	Methane oxidation needs less stressed plants. Trends in Plant Science, 2013, 18, 657-659.	8.8	15
57	Relating nutritional and physiological characteristics to growth of Pinus radiata clones planted on a range of sites in New Zealand. Tree Physiology, 2010, 30, 1174-1191.	3.1	13
58	A nutrient balance model (NuBalM) to predict biomass and nitrogen pools in Pinus radiata forests. Forest Ecology and Management, 2011, 262, 270-277.	3.2	13
59	The Right Tree for the Job? Perceptions of Species Suitability for the Provision of Ecosystem Services. Environmental Management, 2014, 53, 783-799.	2.7	13
60	Effects of the addition of forest floor extracts on soil carbon dioxide efflux. Biology and Fertility of Soils, 2006, 43, 199-207.	4.3	11
61	Genotypic variation in foliar nutrient concentrations, Î [°] 13 C, and chlorophyll fluorescence in relation to tree growth of radiata pine clones in a serpentine soil. Journal of Plant Nutrition and Soil Science, 2013, 176, 724-733.	1.9	11
62	Impacts of forest harvest removal and fertiliser additions on end of rotation biomass, carbon and nutrient stocks of Pinus radiata. Forest Ecology and Management, 2021, 493, 119161.	3.2	11
63	Title is missing!. Agroforestry Systems, 2002, 55, 89-98.	2.0	10
64	Carbon and net nitrogen mineralisation in two forest soils amended with different concentrations of biuret. Soil Biology and Biochemistry, 2003, 35, 855-866.	8.8	10
65	Effect of biuret on growth and nutrition of Douglas-fir (Pseudotsuga menziesii (Mirb) Franco) seedlings. Forest Ecology and Management, 2004, 192, 335-348.	3.2	10
66	Legacies of organic matter removal: decreased microbial biomass nitrogen and net N mineralization in New Zealand Pinus radiata plantations. Biology and Fertility of Soils, 2010, 46, 309-316.	4.3	10
67	Acid hydrolysis to define a biologically-resistant pool is compromised by carbon loss and transformation. Soil Biology and Biochemistry, 2013, 64, 122-126.	8.8	10
68	New evidence indicates the coarse soil fraction is of greater relevance to plant nutrition than previously suggested. Plant and Soil, 2014, 374, 371-379.	3.7	10
69	Manipulation of soil methane oxidation under drought stress. Science of the Total Environment, 2021, 757, 144089.	8.0	10
70	Globally relevant lessons from a long-term trial series testing universal hypothesis of the impacts of increasing biomass removal on site productivity and nutrient pools. Forest Ecology and Management, 2021, 494, 119325.	3.2	10
71	Effect of boron fertiliser, weed control and genotype on foliar nutrients and tree growth of juvenile Pinus radiata at two contrasting sites in New Zealand. Forest Ecology and Management, 2008, 255, 1196-1209.	3.2	9
72	Warming Rather Than Increased Precipitation Increases Soil Recalcitrant Organic Carbon in a Semiarid Grassland after 6 Years of Treatments. PLoS ONE, 2013, 8, e53761.	2.5	9

#	Article	IF	CITATIONS
73	Ethylene rather than dissolved organic carbon controls methane uptake in upland soils. Global Change Biology, 2014, 20, 2379-2380.	9.5	9
74	Field-scale variability in site conditions explain phenotypic plasticity in response to nitrogen source in Pinus radiata D. Don. Plant and Soil, 2019, 443, 353-368.	3.7	9
75	Title is missing!. Plant and Soil, 2000, 225, 213-225.	3.7	8
76	Using natural ¹⁵ N abundances to trace the fate of waste-derived nitrogen in forest ecosystems: New Zealand case studies. Isotopes in Environmental and Health Studies, 2005, 41, 31-38.	1.0	8
77	Future expectations of forest soils: increasing productivity within environmental limits using new knowledge. New Zealand Journal of Agricultural Research, 2018, 61, 389-401.	1.6	8
78	Chlorophyll fluorescence response of Pinus radiata clones to nitrogen and phosphorus supply. Ciencia E Investigacion Agraria, 2009, 36, .	0.2	7
79	Priming effect of biuret addition on native soil N mineralisation under laboratory conditions. Soil Biology and Biochemistry, 2005, 37, 1959-1961.	8.8	6
80	Soil C/N influences the carbon flux and partitioning in control and fertilized mini-plots of Pinus radiata in New Zealand. Ciencia E Investigacion Agraria, 2011, 38, 277-289.	0.2	6
81	Genotypic variation in Pinus radiata responses to nitrogen source are related to changes in the root microbiome. FEMS Microbiology Ecology, 2018, 94, .	2.7	6
82	National series of long-term intensive harvesting trials in Pinus radiata stands in New Zealand: Initial biomass, carbon and nutrient pool data. Data in Brief, 2019, 27, 104757.	1.0	6
83	Improving the Representation of Climate Change Adaptation Behaviour in New Zealand's Forest Growing Sector. Land, 2022, 11, 364.	2.9	6
84	Response of <i>Pinus radiata</i> D. Don to Boron Fertilization in a Glasshouse Study. Communications in Soil Science and Plant Analysis, 2012, 43, 1412-1426.	1.4	5
85	Magnesium fertilizer, weed control and clonal effects on wood stiffness of juvenile Pinus radiata at two contrasting sites. Forest Ecology and Management, 2013, 306, 128-134.	3.2	4
86	Technical note: Manipulating interactions between plant stress responses and soil methane oxidation rates. Biogeosciences, 2018, 15, 4125-4129.	3.3	4
87	Modelling water balance in fertilised and unfertilised Cupressus lusitanica and Pinus radiata grown across an environmental gradient. Forest Ecology and Management, 2008, 255, 1104-1112.	3.2	3
88	Coarse soil can enhance the availability of nutrients from fine soil. Journal of Plant Nutrition and Soil Science, 2014, 177, 848-850.	1.9	3
89	Interclonal variation, coordination, and trade-offs between hydraulic conductance and gas exchange in Pinus radiata: consequences on plant growth and wood density. Journal of Experimental Botany, 2021, 72, 2419-2433.	4.8	3
90	Pinus radiata in a sub-humid temperate silvopastoral system: modelling of seasonal root growth. Forest Ecology and Management, 2003, 182, 303-313.	3.2	2

#	Article	IF	CITATIONS
91	Preface to the special issue for the 8th International Symposium on Forest Soils: Linking Soil Processes to Forest Productivity and Water Protection under Global Change. Journal of Soils and Sediments, 2017, 17, 2215-2217.	3.0	2
92	Fate of biuret 15N and its effect on net mineralisation of native soil N in forest soils. Soil Research, 2008, 46, 636.	1.1	2
93	Inter-specific variation in foliar nutritional responses to disturbance by small coupe harvesting varies with landscape position. Forest Ecology and Management, 2009, 258, 2382-2387.	3.2	1
94	Soil respiration negatively correlated with volume gains by a young Pinus radiata clone over five months. Geoderma, 2020, 361, 114105.	5.1	1
95	Protecting the unseen majority: Land cover and environmental factors linked with soil bacterial communities and functions in New Zealand. New Zealand Journal of Ecology, 0, , .	1.1	1
96	The influence of N and P supply and genotype on N remobilization in containerized Pinus radiata plants. Ciencia E Investigacion Agraria, 2012, 39, 505-520.	0.2	1
97	A potential nutritional modifier for predicting primary productivity of Pinus radiata in New Zealand using a simplified radiation-use efficiency model. Ciencia E Investigacion Agraria, 2013, 40, 361-374.	0.2	0