Claudio Ioriatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6663845/publications.pdf

Version: 2024-02-01

159585 175258 2,971 67 30 52 citations h-index g-index papers 68 68 68 2025 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	In Focus: Spotted wing drosophila, <i>Drosophila suzukii</i> , across perspectives. Pest Management Science, 2011, 67, 1349-1351.	3.4	297
2	Diversity of insecticide resistance mechanisms and spectrum in European populations of the codling moth, <i>Cydia pomonella</i> . Pest Management Science, 2007, 63, 890-902.	3.4	151
3	Chemical Ecology and Management of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology, 2011, 104, 1125-1137.	1.8	140
4	Integrating Temperature-Dependent Life Table Data into a Matrix Projection Model for Drosophila suzukii Population Estimation. PLoS ONE, 2014, 9, e106909.	2.5	124
5	ANTENNAL AND BEHAVIORAL RESPONSES OF GRAPEVINE MOTH Lobesia botrana FEMALES TO VOLATILES FROM GRAPEVINE. Journal of Chemical Ecology, 2005, 31, 77-87.	1.8	120
6	Drosophila suzukii (Diptera: Drosophilidae) and its Potential Impact to Wine Grapes During Harvest in Two Cool Climate Wine Grape Production Regions. Journal of Economic Entomology, 2015, 108, 1148-1155.	1.8	120
7	Synergism and redundancy in a plant volatile blend attracting grapevine moth females. Phytochemistry, 2007, 68, 203-209.	2.9	118
8	<i>Drosophila suzukii</i> (Diptera: Drosophilidae): A Decade of Research Towards a Sustainable Integrated Pest Management Program. Journal of Economic Entomology, 2021, 114, 1950-1974.	1.8	113
9	Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas. Biological Control, 2015, 84, 28-35.	3.0	111
10	Essential host plant cues in the grapevine moth. Die Naturwissenschaften, 2006, 93, 141-144.	1.6	102
11	Drosophila suzukii population response to environment and management strategies. Journal of Pest Science, 2016, 89, 653-665.	3.7	90
12	Synthetic Grape Volatiles Attract Mated Lobesia botrana Females in Laboratory and Field Bioassays. Journal of Chemical Ecology, 2009, 35, 1054-1062.	1.8	82
13	Effects of chlorantraniliprole on eggs and larvae of <i>Lobesia botrana</i> (Denis &) Tj ETQq1 1 0.784314 r	gBT /Overl 	lock 10 Tf 50
14	Semiochemical Strategies for Tortricid Moth Control in Apple Orchards and Vineyards in Italy. Journal of Chemical Ecology, 2016, 42, 571-583.	1.8	66
15	Attraction of Female Grapevine Moth to Common and Specific Olfactory Cues from 2 Host Plants. Chemical Senses, 2010, 35, 57-64.	2.0	63
16	Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations. BioControl, 2019, 64, 9-19.	2.0	62
17	Integrated Fruit Production and Pest Management in Europe: The Apple Case Study and How Far We Are From the Original Concept?. Insects, 2015, 6, 626-657.	2.2	61
18	Comparative life history traits of indigenous Italian parasitoids of Drosophila suzukii and their effectiveness at different temperatures. Biological Control, 2017, 112, 20-27.	3.0	58

#	Article	IF	CITATIONS
19	Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila. Biological Control, 2018, 117, 188-196.	3.0	58
20	Sex Pheromone Aerosol Devices for Mating Disruption: Challenges for a Brighter Future. Insects, 2019, 10, 308.	2.2	55
21	Wind tunnel attraction of grapevine moth females, Lobesia Botrana, to natural and artificial grape odour. Chemoecology, 2006, 16, 87-92.	1.1	49
22	Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape. Journal of Economic Entomology, 2018, 111, 283-292.	1.8	48
23	Entomological Opportunities and Challenges for Sustainable Viticulture in a Global Market. Annual Review of Entomology, 2018, 63, 193-214.	11.8	46
24	Toxicity of emamectin benzoate to <i>Cydia pomonella</i> (L.) and <i>Cydia molesta</i> (Busck) (Lepidoptera: Tortricidae): laboratory and field tests. Pest Management Science, 2009, 65, 306-312.	3.4	44
25	Seasonal Reproductive Biology of Drosophila suzukii (Diptera: Drosophilidae) in Temperate Climates. Environmental Entomology, 2018, 47, 166-174.	1.4	41
26	Comparison of attractants for monitoring <i>Drosophila suzukii</i> in sweet cherry orchards in Italy. Journal of Applied Entomology, 2018, 142, 18-25.	1.8	36
27	Effect of antiâ€hail nets on C <i>ydiaÂpomonella</i> behavior in apple orchards. Entomologia Experimentalis Et Applicata, 2008, 129, 32-36.	1.4	34
28	Mating Behavior of <i>Hyalesthes obsoletus</i> (Hemiptera: Cixiidae). Annals of the Entomological Society of America, 2010, 103, 813-822.	2.5	33
29	Oviposition Response of the Moth Lobesia botrana to Sensory Cues from a Host Plant. Chemical Senses, 2011, 36, 633-639.	2.0	33
30	Early detection of resistance to tebufenozide in field populations of Cydia pomonella L.: methods and mechanisms. Journal of Applied Entomology, 2007, 131, 453-459.	1.8	32
31	Grape Berry Moths in Western European Vineyards and Their Recent Movement into the New World., 2012,, 339-359.		32
32	Cost–benefit analysis of controlling the spotted wing drosophila (<i>Drosophila suzukii</i>) Tj ETQq0 0 0 rgBT Science, 2017, 73, 2318-2327.	Overlock 3.4	10 Tf 50 22 32
33	Study on the Role of Olfaction in Host Plant Detection of <l>Scaphoideus titanus</l> (Hemiptera: Cicadellidae) Nymphs. Journal of Economic Entomology, 2009, 102, 974-980.	1.8	29
34	Susceptibility of table grape varieties grown in southâ€eastern Italy to <i>Drosophila suzukii</i> Journal of Applied Entomology, 2018, 142, 465-472.	1.8	26
35	New Pheromone Components of the Grapevine Moth Lobesia botrana. Journal of Chemical Ecology, 2005, 31, 2923-2932.	1.8	25
36	Biological Activity of Ethyl (<i>E</i> , <i>Z</i>)-2,4-Decadienoate on Different Tortricid Species: Electrophysiological Responses and Field Tests. Environmental Entomology, 2007, 36, 1025-1031.	1.4	25

#	Article	IF	CITATIONS
37	Essential Oils as Post-Harvest Crop Protectants against the Fruit Fly Drosophila suzukii: Bioactivity and Organoleptic Profile. Insects, 2020, 11, 508.	2.2	24
38	Effects of the fungicides mancozed and dithianon on mortality and reproduction of the predatory miteAmblyseius andersoni. Experimental and Applied Acarology, 1992, 15, 109-116.	1.6	23
39	Pheromone pre-exposure and mating modulate codling moth (Lepidoptera: Tortricidae) response to host plant volatiles. Agricultural and Forest Entomology, 2005, 7, 231-236.	1.3	20
40	The biological efficacy of pear ester on the activity of Granulosis virus for codling moth. Journal of Pest Science, 2008, 81, 29-34.	3.7	18
41	A study of the effects of â€~Candidatus Phytoplasma mali' on the psyllid Cacopsylla melanoneura (Hemiptera: Psyllidae). Journal of Invertebrate Pathology, 2010, 103, 65-67.	3.2	18
42	Biological control of Drosophila suzukii: Efficacy of parasitoids, entomopathogenic fungi, nematodes and deterrents of oviposition in laboratory assays. Crop Protection, 2019, 125, 104897.	2.1	18
43	Live Traps for Adult Brown Marmorated Stink Bugs. Insects, 2019, 10, 376.	2.2	18
44	The Competitive Mating of Irradiated Brown Marmorated Stink Bugs, Halyomorpha halys, for the Sterile Insect Technique. Insects, 2019, 10, 411.	2.2	18
45	Tissue age, orchard location and disease management influence the composition of fungal and bacterial communities present on the bark of apple trees. Environmental Microbiology, 2020, 22, 2080-2093.	3.8	17
46	First Report of Leptopilina japonica in Europe. Insects, 2020, 11, 611.	2.2	16
47	Flight tunnel response of codling moth Cydia pomonella to blends of codlemone, codlemone antagonists and pear ester. Physiological Entomology, 2010, 35, 249-254.	1.5	14
48	Evaluation of the environmental impact of apple pest control strategies using pesticide risk indicators. Integrated Environmental Assessment and Management, 2011, 7, 542-549.	2.9	14
49	Attractiveness of year-old polyethylene Isonet sex pheromone dispensers for Lobesia botrana. Entomologia Experimentalis Et Applicata, 2005, 117, 201-207.	1.4	13
50	Potential of a blend of E8,E10â€120H and E8,E10â€12Ac for mating disruption of codling moth, <i>Cydia pomonella</i> L. (Lep., Tortricidae). Journal of Applied Entomology, 1996, 120, 611-614.	1.8	12
51	Behavioral responses of leafroller larvae to apple leaves and fruit. Entomologia Experimentalis Et Applicata, 1996, 81, 97-103.	1.4	12
52	Efficacy baselines of seven insecticides against larvae of Pandemis heparana (Lepidoptera: Tortricidae). Journal of Pest Science, 2006, 79, 163-168.	3.7	12
53	Effectiveness of five insecticides for the control of adults and young stages of <i>Cacopsylla melanoneura</i> (Förster) (Hemiptera: Psyllidae) in a semiâ€field trial. Pest Management Science, 2010, 66, 308-312.	3.4	11
54	Importance of psyllids' life stage in the epidemiology of apple proliferation phytoplasma. Journal of Pest Science, 2020, 93, 49-61.	3.7	10

#	Article	IF	CITATIONS
55	Ecological and Genetic Differences between Cacopsylla melanoneura (Hemiptera, Psyllidae) Populations Reveal Species Host Plant Preference. PLoS ONE, 2013, 8, e69663.	2.5	9
56	Role of Winter Host Plants in Vineyard Colonization and Phenology of <i>Zygina rhamni < /i> (Hemiptera: Cicadellidae: Typhlocybinae). Annals of the Entomological Society of America, 2008, 101, 1003-1009.</i>	2.5	8
57	Olfactory activity of ethyl (E,Z)-2,4-decadienoate on adult oriental fruit moths. Canadian Entomologist, 2010, 142, 481-488.	0.8	7
58	PRIMER NOTE: Characterization of microsatellite loci in Cacopsylla melanoneura Förster (Homoptera:) Tj ETQq0	0 0 rgBT 1.7	Oyerlock 10
59	Substrate-Borne Vibrational Communication in the Vector of Apple Proliferation Disease Cacopsylla picta (Hemiptera: Psyllidae). Journal of Economic Entomology, 2020, 113, 596-603.	1.8	6
60	Impacts of Standard Wine-Making Process on the Survival of <l>Lobesia botrana</l> Larvae (Lepidoptera: Tortricidae) in Infested Grape Clusters. Journal of Economic Entomology, 2013, 106, 2349-2353.	1.8	5
61	Étude des principaux facteurs influençant l émission d'attractifs sexuels synthétiques à partir de diffuseurs en caoutchouc et en plastique. Entomologia Experimentalis Et Applicata, 1987, 44, 123-130.	1.4	4
62	Susceptibility of selected apple cultivars to the Mediterranean fruit fly. Journal of Applied Entomology, 2019, 143, 744-753.	1.8	4
63	IFP EXPERIENCES IN TRENTINO, ITALY. Acta Horticulturae, 2000, , 45-50.	0.2	4
64	Soil Communities: Who Responds and How Quickly to a Change in Agricultural System?. Sustainability, 2022, 14, 383.	3.2	3
65	Trapping Brown Marmorated Stink Bugs: "The Nazgȗl―Lure and Kill Nets. Insects, 2019, 10, 433.	2.2	1
66	Hail nets enhance disruption of sexual communication by synthetic pheromone in codling moth. Entomologia Generalis, 2017, 37, 7-18.	3.1	1
67	Un nuovo ed efficace attrattivo per la cattura di Drosophila Suzukii basato su ceppi di oenococcus oeni., 2015,,.		0