Thomas Tessonnier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6663600/publications.pdf

Version: 2024-02-01

567281 580821 26 881 15 25 citations h-index g-index papers 29 29 29 1137 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Combined DNA Damage Repair Interference and Ion Beam Therapy: Development, Benchmark, and Clinical Implications of a Mechanistic Biological Model. International Journal of Radiation Oncology Biology Physics, 2022, 112, 802-817.	0.8	6
2	How can we consider variable RBE and LETd prediction during clinical practice? A pediatric case report at the Normandy Proton Therapy Centre using an independent dose engine. Radiation Oncology, 2022, 17, 23.	2.7	4
3	Potential of a Second-Generation Dual-Layer Spectral CT for Dose Calculation in Particle Therapy Treatment Planning. Frontiers in Oncology, 2022, 12, 853495.	2.8	5
4	Biological Dose Optimization for Particle Arc Therapy Using Helium and Carbon Ions. International Journal of Radiation Oncology Biology Physics, 2022, 114, 334-348.	0.8	6
5	Impact of DNA Repair Kinetics and Dose Rate on RBE Predictions in the UNIVERSE. International Journal of Molecular Sciences, 2022, 23, 6268.	4.1	2
6	EPEN-15. Radiotherapy with helium ions has the potential to improve both endocrine and neurocognitive outcome in pediatric patients with ependymoma. Neuro-Oncology, 2022, 24, i41-i41.	1.2	0
7	Spotâ€scanning hadron arc (SHArc) therapy: A proof of concept using singleâ€and multiâ€on strategies with helium, carbon, oxygen, and neon ions. Medical Physics, 2022, 49, 6082-6097.	3.0	6
8	Spot-Scanning Hadron Arc (SHArc) Therapy: A Study With Light and Heavy Ions. Advances in Radiation Oncology, 2021, 6, 100661.	1.2	16
9	Towards real-time PGS range monitoring in proton therapy of prostate cancer. Scientific Reports, 2021, 11, 15331.	3.3	6
10	FLASH Dose Rate Helium Ion Beams: First In Vitro Investigations. International Journal of Radiation Oncology Biology Physics, 2021, 111, 1011-1022.	0.8	34
11	Dataset for predicting single-spot proton ranges in proton therapy of prostate cancer. Scientific Data, 2021, 8, 252.	5.3	O
12	Proton therapy for head and neck squamous cell carcinomas: A review of the physical and clinical challenges. Radiotherapy and Oncology, 2020, 147, 30-39.	0.6	37
13	Biophysical modeling and experimental validation of relative biological effectiveness (RBE) for 4He ion beam therapy. Radiation Oncology, 2019, 14, 123.	2.7	37
14	Dosimetric validation of Monte Carlo and analytical dose engines with raster-scanning 1H, 4He, 12C, and 16O ion-beams using an anthropomorphic phantom. Physica Medica, 2019, 64, 123-131.	0.7	18
15	Proton therapy for treatment of intracranial benign tumors in adults: A systematic review. Cancer Treatment Reviews, 2019, 72, 56-64.	7.7	43
16	Fast robust dose calculation on GPU for high-precision 1H, 4He, 12C and 16O ion therapy: the FRoG platform. Scientific Reports, 2018, 8, 14829.	3.3	41
17	No diagnostic impact of routinely use of respiratory gating to characterize lung nodules with 18F-FDG PET/CT. Medecine Nucleaire, 2018, 42, 206-213.	0.2	O
18	Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison. Radiation Oncology, 2018, 13, 2.	2.7	36

THOMAS TESSONNIER

#	Article	IF	CITATIONS
19	Software platform for simulation of a prototype proton <scp>CT</scp> scanner. Medical Physics, 2017, 44, 1002-1016.	3.0	48
20	Spectroscopic study of prompt-gamma emission for range verification in proton therapy. Physica Medica, 2017, 34, 7-17.	0.7	38
21	Sensitivity of post treatment positron emission tomography/computed tomography to detect inter-fractional range variations in scanned ion beam therapy. Acta Oncológica, 2017, 56, 1451-1458.	1.8	25
22	The FLUKA Code: An Accurate Simulation Tool for Particle Therapy. Frontiers in Oncology, 2016, 6, 116.	2.8	182
23	Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget, 2016, 7, 56676-56689.	1.8	72
24	Comparison of proton therapy treatment planning for head tumors with a pencil beam algorithm on dual and single energy CT images. Medical Physics, 2016, 43, 495-504.	3.0	89
25	Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Medical Physics, 2016, 43, 1995-2004.	3.0	87
26	Phase Space Generation for Proton and Carbon Ion Beams for External Users' Applications at the Heidelberg Ion Therapy Center. Frontiers in Oncology, 2015, 5, 297.	2.8	33