Tony Kouzarides

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6663131/publications.pdf

Version: 2024-02-01

140 papers 57,616 citations

87 h-index 139 g-index

145 all docs

145
docs citations

145 times ranked 49482 citing authors

#	Article	IF	CITATIONS
1	Chromatin Modifications and Their Function. Cell, 2007, 128, 693-705.	28.9	9,258
2	Regulation of chromatin by histone modifications. Cell Research, 2011, 21, 381-395.	12.0	4,442
3	Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410, 120-124.	27.8	2,535
4	Cancer Epigenetics: From Mechanism to Therapy. Cell, 2012, 150, 12-27.	28.9	2,521
5	Active genes are tri-methylated at K4 of histone H3. Nature, 2002, 419, 407-411.	27.8	1,871
6	The CBP co-activator is a histone acetyltransferase. Nature, 1996, 384, 641-643.	27.8	1,666
7	An operational definition of epigenetics: Figure 1 Genes and Development, 2009, 23, 781-783.	5.9	1,457
8	Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature, 2011, 478, 529-533.	27.8	1,354
9	Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature, 1998, 391, 597-601.	27.8	1,182
10	DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genetics, 2000, 24, 88-91.	21.4	894
11	The Methyl-CpG-binding Protein MeCP2 Links DNA Methylation to Histone Methylation. Journal of Biological Chemistry, 2003, 278, 4035-4040.	3.4	855
12	New Nomenclature for Chromatin-Modifying Enzymes. Cell, 2007, 131, 633-636.	28.9	849
13	Rb targets histone H3 methylation and HP1 to promoters. Nature, 2001, 412, 561-565.	27.8	840
14	Histone methylation in transcriptional control. Current Opinion in Genetics and Development, 2002, 12, 198-209.	3.3	833
15	Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature, 2017, 552, 126-131.	27.8	833
16	Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology, 2014, 15, 703-708.	37.0	775
17	Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO Journal, 2002, 21, 2383-2396.	7.8	764
18	Methyltransferase Recruitment and DNA Hypermethylation of Target Promoters by an Oncogenic Transcription Factor. Science, 2002, 295, 1079-1082.	12.6	754

#	Article	IF	CITATIONS
19	Histone Deimination Antagonizes Arginine Methylation. Cell, 2004, 118, 545-553.	28.9	744
20	Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nature Cell Biology, 2004, 6, 73-77.	10.3	686
21	The TAFII250 Subunit of TFIID Has Histone Acetyltransferase Activity. Cell, 1996, 87, 1261-1270.	28.9	677
22	Methylation of histone H3 Lys 4 in coding regions of active genes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8695-8700.	7.1	673
23	The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Research, 2003, 31, 2305-2312.	14.5	631
24	Regulation of E2F1 activity by acetylation. EMBO Journal, 2000, 19, 662-671.	7.8	629
25	Role of RNA modifications in cancer. Nature Reviews Cancer, 2020, 20, 303-322.	28.4	621
26	Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature, 2002, 416, 103-107.	27.8	594
27	Histone acetylases and deacetylases in cell proliferation. Current Opinion in Genetics and Development, 1999, 9, 40-48.	3.3	572
28	JAK2 phosphorylates histone H3Y41 and excludes HP1α from chromatin. Nature, 2009, 461, 819-822.	27.8	564
29	Mutations truncating the EP300 acetylase in human cancers. Nature Genetics, 2000, 24, 300-303.	21.4	543
30	Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature, 2007, 445, 214-218.	27.8	533
31	Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature, 2021, 593, 597-601.	27.8	531
32	Nucleosome-Interacting Proteins Regulated by DNA and Histone Methylation. Cell, 2010, 143, 470-484.	28.9	524
33	Methylation of Histone H4 Lysine 20 Controls Recruitment of Crb2 to Sites of DNA Damage. Cell, 2004, 119, 603-614.	28.9	512
34	Histone Methylation. Cell, 2002, 109, 801-806.	28.9	484
35	Stimulation of E2F1/DP1 transcriptional activity by MDM2 oncoprotein. Nature, 1995, 375, 691-694.	27.8	464
36	The Tudor domain â€~Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends in Biochemical Sciences, 2003, 28, 69-74.	7.5	448

#	Article	IF	Citations
37	BET inhibitor resistance emerges from leukaemia stem cells. Nature, 2015, 525, 538-542.	27.8	441
38	Reversing histone methylation. Nature, 2005, 436, 1103-1106.	27.8	440
39	Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nature Cell Biology, 2006, 8, 623-630.	10.3	425
40	EMSY Links the BRCA2 Pathway to Sporadic Breast and Ovarian Cancer. Cell, 2003, 115, 523-535.	28.9	389
41	Spatial Distribution of Di- and Tri-methyl Lysine 36 of Histone H3 at Active Genes. Journal of Biological Chemistry, 2005, 280, 17732-17736.	3.4	378
42	Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO Journal, 2005, 24, 336-346.	7.8	375
43	Targeting Epigenetic Readers in Cancer. New England Journal of Medicine, 2012, 367, 647-657.	27.0	363
44	Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature, 2014, 507, 104-108.	27.8	358
45	Human but Not Yeast CHD1 Binds Directly and Selectively to Histone H3 Methylated at Lysine 4 via Its Tandem Chromodomains. Journal of Biological Chemistry, 2005, 280, 41789-41792.	3.4	338
46	Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature, 2007, 449, 928-932.	27.8	322
47	The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO Journal, 1999, 18, 2449-2458.	7.8	295
48	Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development (Cambridge), 2003, 130, 4235-4248.	2.5	294
49	METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation. Molecular Cell, 2019, 74, 1278-1290.e9.	9.7	288
50	Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Reports, 2002, 3, 39-44.	4.5	285
51	The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO Journal, 2002, 21, 2682-2691.	7.8	284
52	Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding. Nature, 1989, 340, 568-571.	27.8	281
53	Proline Isomerization of Histone H3 Regulates Lysine Methylation and Gene Expression. Cell, 2006, 126, 905-916.	28.9	277
54	Unsafe SETs: histone lysine methyltransferases and cancer. Trends in Biochemical Sciences, 2002, 27, 396-402.	7.5	270

#	Article	IF	CITATIONS
55	Crosstalk between CARM1 Methylation and CBP Acetylation on Histone H3. Current Biology, 2002, 12, 2090-2097.	3.9	262
56	Methylation of Histone H3 K4 Mediates Association of the Isw1p ATPase with Chromatin. Molecular Cell, 2003, 12, 1325-1332.	9.7	248
57	Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. International Journal of Developmental Biology, 2006, 50, 455-61.	0.6	222
58	Histone H3 Lysine 4 Methylation Disrupts Binding of Nucleosome Remodeling and Deacetylase (NuRD) Repressor Complex. Journal of Biological Chemistry, 2002, 277, 11621-11624.	3.4	215
59	Differential expression of selected histone modifier genes in human solid cancers. BMC Genomics, 2006, 7, 90.	2.8	209
60	The Co-repressor mSin3A Is a Functional Component of the REST-CoREST Repressor Complex. Journal of Biological Chemistry, 2000, 275, 9461-9467.	3.4	207
61	Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Molecular Cancer Therapeutics, 2005, 4, 1521-1532.	4.1	205
62	Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature, 1996, 382, 88-90.	27.8	204
63	Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer Research, 2015, 75, 5106-5119.	0.9	193
64	Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature, 2014, 505, 564-568.	27.8	186
65	Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Research, 2002, 30, 3831-3838.	14.5	178
66	Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition. Journal of Medicinal Chemistry, 2016, 59, 1425-1439.	6.4	177
67	Acetylation of importin-α nuclear import factors by CBP/p300. Current Biology, 2000, 10, 467-470.	3.9	171
68	cis-Acting DNA from Fission Yeast Centromeres Mediates Histone H3 Methylation and Recruitment of Silencing Factors and Cohesin to an Ectopic Site. Current Biology, 2002, 12, 1652-1660.	3.9	165
69	Acetylation of Î ² -Catenin by CREB-binding Protein (CBP). Journal of Biological Chemistry, 2002, 277, 25562-25567.	3.4	164
70	RNA modifications detection by comparative Nanopore direct RNA sequencing. Nature Communications, 2021, 12, 7198.	12.8	163
71	The maize retinoblastoma protein homologue ZmRb-1 is regulated during leaf development and displays conserved interactions with $G1/S$ regulators and plant cyclin D (CycD) proteins. Plant Molecular Biology, 1998, 37, 155-169.	3.9	147
72	DNA methyltransferases get connected to chromatin. Trends in Genetics, 2002, 18, 275-277.	6.7	141

#	Article	IF	Citations
73	The retinoblastoma protein binds E2F residues required for activation in vivo and TBP bindingin vitro. Nucleic Acids Research, 1993, 21, 4998-5004.	14.5	140
74	Histone H3 tail clipping regulates gene expression. Nature Structural and Molecular Biology, 2009, 16, 17-22.	8.2	136
75	Epstein-Barr Virus Nuclear Antigen 3C Interacts with Histone Deacetylase To Repress Transcription. Journal of Virology, 1999, 73, 5688-5697.	3.4	136
76	Retinoblastoma protein meets chromatin. Trends in Biochemical Sciences, 1999, 24, 142-145.	7.5	133
77	SnapShot: Histone-Modifying Enzymes. Cell, 2007, 131, 822-822.e1.	28.9	132
78	Human RNA Methyltransferase BCDIN3D Regulates MicroRNA Processing. Cell, 2012, 151, 278-288.	28.9	131
79	LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease. Nature Cell Biology, 2011, 13, 13-21.	10.3	121
80	Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biology, 2018, 19, 32.	8.8	114
81	c-Jun is phosphorylated by the DNA-dependent protein kinasein vitro; definition of the minimal kinase recognition motif. Nucleic Acids Research, 1993, 21, 1289-1295.	14.5	110
82	The CBP co-activator stimulates E2F1/DP1 activity. Nucleic Acids Research, 1996, 24, 4139-4145.	14.5	107
83	Methylation of H3 Lysine 4 at Euchromatin Promotes Sir3p Association with Heterochromatin. Journal of Biological Chemistry, 2004, 279, 47506-47512.	3.4	104
84	Phosphorylation of Histone H3 Thr-45 Is Linked to Apoptosis. Journal of Biological Chemistry, 2009, 284, 16575-16583.	3.4	98
85	ALKBH1 is a Histone H2A Dioxygenase Involved in Neural Differentiation. Stem Cells, 2012, 30, 2672-2682.	3.2	97
86	CBP/p300 Integrates Raf/Rac-Signaling Pathways in the Transcriptional Induction of NF-ATc during T Cell Activation. Immunity, 1999, 10, 515-524.	14.3	96
87	Mechanisms of P/CAF auto-acetylation. Nucleic Acids Research, 2003, 31, 4285-4292.	14.5	93
88	Functional interdependence of BRD4 and DOT1L in MLL leukemia. Nature Structural and Molecular Biology, 2016, 23, 673-681.	8.2	92
89	BRCA2 associates with acetyltransferase activity when bound to P/CAF. Oncogene, 1998, 17, 2531-2534.	5.9	89
90	A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly. Genes and Development, 2010, 24, 647-652.	5.9	87

#	Article	IF	Citations
91	MCM3AP, a novel acetyltransferase that acetylates replication protein MCM3. EMBO Reports, 2001, 2, 119-123.	4.5	80
92	Histone Methylation: Recognizing the Methyl Mark. Methods in Enzymology, 2003, 376, 269-288.	1.0	76
93	Direct Binding of INHAT to H3 Tails Disrupted by Modifications. Journal of Biological Chemistry, 2004, 279, 23859-23862.	3.4	7 3
94	Regulation of Histone H3 Lysine 56 Acetylation in Schizosaccharomyces pombe. Journal of Biological Chemistry, 2007, 282, 15040-15047.	3.4	70
95	BET protein inhibition shows efficacy against JAK2V617F-driven neoplasms. Leukemia, 2014, 28, 88-97.	7.2	70
96	Targeting the m ⁶ A RNA modification pathway blocks SARS-CoV-2 and HCoV-OC43 replication. Genes and Development, 2021, 35, 1005-1019.	5.9	70
97	Characterization of an E1A-CBP Interaction Defines a Novel Transcriptional Adapter Motif (TRAM) in CBP/p300. Journal of Virology, 1999, 73, 3574-3581.	3.4	69
98	SnapShot: Histone-Modifying Enzymes. Cell, 2007, 128, 802.e1-802.e2.	28.9	68
99	The PHD and Chromo Domains Regulate the ATPase Activity of the Human Chromatin Remodeler CHD4. Journal of Molecular Biology, 2012, 422, 3-17.	4.2	68
100	A Chemical Probe for the ATAD2 Bromodomain. Angewandte Chemie - International Edition, 2016, 55, 11382-11386.	13.8	67
101	Amplification of the BRCA2 Pathway Gene EMSY in Sporadic Breast Cancer Is Related to Negative Outcome. Clinical Cancer Research, 2004, 10, 5785-5791.	7.0	62
102	The HMG-box transcription factor HBP1 is targeted by the pocket proteins and E1A. Oncogene, 1997, 14, 2721-2728.	5.9	61
103	SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4. Nature Communications, 2018, 9, 5378.	12.8	60
104	A Novel Human Ada2 Homologue Functions with Gcn5 or Brg1 To Coactivate Transcription. Molecular and Cellular Biology, 2003, 23, 6944-6957.	2.3	59
105	Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway. Science Signaling, 2018, 11, .	3.6	57
106	The Breast Cancer Oncogene EMSY Represses Transcription of Antimetastatic microRNA miR-31. Molecular Cell, 2014, 53, 806-818.	9.7	55
107	Three Distinct Patterns of Histone H3Y41 Phosphorylation Mark Active Genes. Cell Reports, 2012, 2, 470-477.	6.4	54
108	A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry. Nature Communications, 2020, 11, 926.	12.8	54

#	Article	IF	Citations
109	p300 is required for orderly G1/S transition in human cancer cells. Oncogene, 2007, 26, 21-29.	5.9	52
110	Distinct transcriptional outputs associated with mono- and dimethylated histone H3 arginine 2. Nature Structural and Molecular Biology, 2009, 16, 449-451.	8.2	48
111	The non-coding snRNA 7SK controls transcriptional termination, poising, and bidirectionality in embryonic stem cells. Genome Biology, 2013, 14, R98.	9.6	48
112	Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD1. PLoS ONE, 2007, 2, e386.	2.5	44
113	Histone H3 lysine 4 methylation is associated with the transcriptional reprogramming efficiency of somatic nuclei by oocytes. Epigenetics and Chromatin, 2010, 3, 4.	3.9	38
114	A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. ELife, 2017, 6 , .	6.0	35
115	Heritable Gene Repression through the Action of a Directed DNA Methyltransferase at a Chromosomal Locus. Journal of Biological Chemistry, 2008, 283, 9878-9885.	3.4	34
116	Identification of SARS-CoV-2–induced pathways reveals drug repurposing strategies. Science Advances, 2021, 7, .	10.3	34
117	<scp>DDX</scp> 3X <scp>RNA</scp> helicase affects breast cancer cell cycle progression by regulating expression of <scp>KLF</scp> 4. FEBS Letters, 2018, 592, 2308-2322.	2.8	32
118	RNA Binding by Histone Methyltransferases Set1 and Set2. Molecular and Cellular Biology, 2017, 37, .	2.3	31
119	Binding of EMSY to HP1Î ² : implications for recruitment of HP1Î ² and BS69. EMBO Reports, 2005, 6, 675-680.	4.5	29
120	Up-regulation of the interferon-related genes in BRCA2 knockout epithelial cells. Journal of Pathology, 2014, 234, 386-397.	4.5	25
121	Crystal Structure of the ENT Domain of Human EMSY. Journal of Molecular Biology, 2005, 350, 964-973.	4.2	24
122	RNA-modifying enzymes and their function in a chromatin context. Nature Structural and Molecular Biology, 2019, 26, 858-862.	8.2	24
123	Decoding the chromatin modification landscape. Cell Cycle, 2011, 10, 182-182.	2.6	22
124	Phosphorylation of Histone H4T80 Triggers DNA Damage Checkpoint Recovery. Molecular Cell, 2018, 72, 625-635.e4.	9.7	21
125	The BRCA2 activation domain associates with and is phosphorylated by a cellular protein kinase. Oncogene, 2000, 19, 4441-4445.	5.9	20
126	Citrullination of HP1 \hat{I}^3 chromodomain affects association with chromatin. Epigenetics and Chromatin, 2019, 12, 21.	3.9	19

#	Article	IF	Citations
127	Basic peptides enhance protein/ DNA interactionin vitro. Nucleic Acids Research, 1992, 20, 3523-3523.	14.5	18
128	Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Molecular Cell, 2021, 81, 2793-2807.e8.	9.7	18
129	S6 Kinase 2 Is Bound to Chromatinâ€Nuclear Matrix Cellular Fractions and Is Able to Phosphorylate Histone H3 at Threonine 45 In Vitro and In Vivo. Journal of Cellular Biochemistry, 2014, 115, 1048-1062.	2.6	14
130	Further Evidence Supporting N7-Methylation of Guanosine (m7G) in Human MicroRNAs. Molecular Cell, 2020, 79, 201-202.	9.7	12
131	The S. pombe Histone H2A Dioxygenase Ofd2 Regulates Gene Expression during Hypoxia. PLoS ONE, 2012, 7, e29765.	2.5	11
132	Post transcriptional control of the epigenetic stem cell regulator PLZF by sirtuin and HDAC deacetylases. Epigenetics and Chromatin, 2015, 8, 38.	3.9	11
133	The putative tumour suppressor Fus-2 is an N-acetyltransferase. Oncogene, 2000, 19, 161-163.	5.9	10
134	A Chemical Probe for the ATAD2 Bromodomain. Angewandte Chemie, 2016, 128, 11554-11558.	2.0	10
135	Interaction of Sox2 with RNA binding proteins in mouse embryonic stem cells. Experimental Cell Research, 2019, 381, 129-138.	2.6	10
136	Nuclear JAK2. Blood, 2011, 118, 6987-6988.	1.4	7
137	Differentiation and gene regulation. Current Opinion in Genetics and Development, 2005, 15, 473-475.	3.3	1
138	Both the Activity and Stability of the Transcriptional Repressor PLZF Are Modified by the Class III Histone Deacetylase SIRT1 Blood, 2004, 104, 360-360.	1.4	0
139	Directed De Novo DNA Methylation of a Genomic Locus Leads to Heritable Transcriptional Repression Blood, 2007, 110, 343-343.	1.4	0
140	Structure/Function and Oncogenic Conversion of Fos and Jun. , 1997, , 223-247.		О