Dennis Yc Leung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6662509/publications.pdf

Version: 2024-02-01

292 papers

31,557 citations

78 h-index

7087

170 g-index

297 all docs

297 docs citations

times ranked

297

31511 citing authors

#	Article	IF	Citations
1	A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 2007, 11, 401-425.	8.2	3,632
2	An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 2014, 39, 426-443.	8.2	2,253
3	A review on biodiesel production using catalyzed transesterification. Applied Energy, 2010, 87, 1083-1095.	5.1	1,935
4	A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 2008, 20, 120-128.	3.2	1,195
5	A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 2007, 32, 3238-3247.	3.8	1,061
6	Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus. New England Journal of Medicine, 2004, 350, 1731-1739.	13.9	1,045
7	An overview of hydrogen production from biomass. Fuel Processing Technology, 2006, 87, 461-472.	3.7	1,032
8	Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Processing Technology, 2006, 87, 883-890.	3.7	804
9	Low temperature catalytic oxidation of volatile organic compounds: a review. Catalysis Science and Technology, 2015, 5, 2649-2669.	2.1	616
10	Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). International Journal of Hydrogen Energy, 2008, 33, 2337-2354.	3.8	576
11	Wind energy development and its environmental impact: A review. Renewable and Sustainable Energy Reviews, 2012, 16, 1031-1039.	8.2	488
12	A review on hydrogen production using aluminum and aluminum alloys. Renewable and Sustainable Energy Reviews, 2009, 13, 845-853.	8.2	443
13	Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant. Energy Conversion and Management, 2008, 49, 2748-2756.	4.4	424
14	Hydrogen Production over Titaniaâ€Based Photocatalysts. ChemSusChem, 2010, 3, 681-694.	3.6	404
15	A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism. Applied Catalysis B: Environmental, 2019, 245, 448-458.	10.8	322
16	Photocatalytic reforming of biomass: A systematic study of hydrogen evolution from glucose solution. International Journal of Hydrogen Energy, 2008, 33, 6484-6491.	3.8	301
17	Parametric study of solid oxide fuel cell performance. Energy Conversion and Management, 2007, 48, 1525-1535.	4.4	300
18	Complete Oxidation of Formaldehyde at Room Temperature Using TiO ₂ Supported Metallic Pd Nanoparticles. ACS Catalysis, 2011, 1, 348-354.	5.5	276

#	Article	IF	CITATIONS
19	Optimization of biodiesel production from camelina oil using orthogonal experiment. Applied Energy, 2011, 88, 3615-3624.	5.1	264
20	A review of biomass-derived fuel processors for fuel cell systems. Renewable and Sustainable Energy Reviews, 2009, 13, 1301-1313.	8.2	252
21	Potential of renewable hydrogen production for energy supply in Hong Kong. International Journal of Hydrogen Energy, 2006, 31, 1401-1412.	3.8	232
22	A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells. Renewable and Sustainable Energy Reviews, 2016, 65, 961-977.	8.2	228
23	Outdoor-indoor air pollution in urban environment: challenges and opportunity. Frontiers in Environmental Science, 2015, 2, .	1.5	221
24	Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature. Journal of Catalysis, 2011, 280, 60-67.	3.1	213
25	Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environment International, 2019, 125, 200-228.	4.8	208
26	Electrochemical Reduction of Carbon Dioxide to Formic Acid. ChemElectroChem, 2014, 1, 836-849.	1.7	206
27	Degradation of biodiesel under different storage conditions. Bioresource Technology, 2006, 97, 250-256.	4.8	198
28	A review on the energy production, consumption, and prospect of renewable energy in China. Renewable and Sustainable Energy Reviews, 2003, 7, 453-468.	8.2	184
29	An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmospheric Research, 2009, 94, 491-500.	1.8	181
30	Photocatalytic performance of tetragonal and cubic \hat{l}^2 -In2S3 for the water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2010, 95, 393-399.	10.8	175
31	A novel 3D plasmonic p-n heterojunction photocatalyst: Ag nanoparticles on flower-like p-Ag2S/n-BiVO4 and its excellent photocatalytic reduction and oxidation activities. Applied Catalysis B: Environmental, 2018, 229, 171-180.	10.8	175
32	Parametric study of solid oxide steam electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 2007, 32, 2305-2313.	3.8	174
33	Byproducts and pathways of toluene destruction via plasma-catalysis. Journal of Molecular Catalysis A, 2011, 336, 87-93.	4.8	171
34	Efficient MnOx supported on coconut shell activated carbon for catalytic oxidation of indoor formaldehyde at room temperature. Chemical Engineering Journal, 2018, 334, 2050-2057.	6.6	170
35	Kinetic study of scrap tyre pyrolysis and combustion. Journal of Analytical and Applied Pyrolysis, 1998, 45, 153-169.	2.6	167
36	Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant. International Journal of Hydrogen Energy, 2007, 32, 4648-4660.	3.8	164

#	Article	IF	Citations
37	Impact of building facades and ground heating on wind flow and pollutant transport in street canyons. Atmospheric Environment, 2007, 41, 9030-9049.	1.9	159
38	Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation. Journal of Materials Chemistry, 2011, 21, 9647.	6.7	157
39	A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell. Renewable and Sustainable Energy Reviews, 2017, 75, 775-795.	8.2	156
40	Simultaneous removal of tetracycline and Cr(VI) by a novel three-dimensional AgI/BiVO4 p-n junction photocatalyst and insight into the photocatalytic mechanism. Chemical Engineering Journal, 2019, 369, 716-725.	6.6	153
41	A modeling study on concentration overpotentials of a reversible solid oxide fuel cell. Journal of Power Sources, 2006, 163, 460-466.	4.0	149
42	Catalytic ozonation of VOCs at low temperature: A comprehensive review. Journal of Hazardous Materials, 2022, 422, 126847.	6.5	146
43	Effects of building aspect ratio and wind speed on air temperatures in urban-like street canyons. Building and Environment, 2010, 45, 176-188.	3.0	140
44	Enhanced Performance and Conversion Pathway for Catalytic Ozonation of Methyl Mercaptan on Single-Atom Ag Deposited Three-Dimensional Ordered Mesoporous MnO ₂ . Environmental Science & Envi	4.6	134
45	Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes. Journal of Power Sources, 2007, 168, 369-378.	4.0	125
46	Pyrolysis of tire powder: influence of operation variables on the composition and yields of gaseous product. Fuel Processing Technology, 2002, 79, 141-155.	3.7	124
47	Mesoporous TiO 2 under VUV irradiation: Enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chemical Engineering Journal, 2017, 327, 490-499.	6.6	124
48	Novel Z-scheme Ag-C3N4/SnS2 plasmonic heterojunction photocatalyst for degradation of tetracycline and H2 production. Chemical Engineering Journal, 2021, 405, 126555.	6.6	124
49	Characteristics of air exchange in a street canyon with ground heating. Atmospheric Environment, 2006, 40, 6396-6409.	1.9	123
50	Hydroxide ZnSn(OH)6: A promising new photocatalyst for benzene degradation. Applied Catalysis B: Environmental, 2009, 91, 67-72.	10.8	122
51	An analytical study of the porosity effect on dye-sensitized solar cell performance. Solar Energy Materials and Solar Cells, 2006, 90, 1331-1344.	3.0	120
52	Numerical investigation of pollutant transport characteristics inside deep urban street canyons. Atmospheric Environment, 2009, 43, 2410-2418.	1.9	115
53	A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. Journal of Materials Chemistry A, 2019, 7, 17420-17425.	5.2	111
54	Study the photocatalytic mechanism of the novel Ag/p-Ag2O/n-BiVO4 plasmonic photocatalyst for the simultaneous removal of BPA and chromium(VI). Chemical Engineering Journal, 2019, 361, 1352-1362.	6.6	110

#	Article	IF	CITATIONS
55	A review on the development and commercialization of biomass gasification technologies in China. Renewable and Sustainable Energy Reviews, 2004, 8, 565-580.	8.2	108
56	Mechanistic study on formaldehyde removal over Pd/TiO2 catalysts: Oxygen transfer and role of water vapor. Chemical Engineering Journal, 2013, 230, 73-79.	6.6	108
57	Ammonia-fed solid oxide fuel cells for power generation-A review. International Journal of Energy Research, 2009, 33, 943-959.	2.2	101
58	Highly dispersed and active supported Pt nanoparticles for gaseous formaldehyde oxidation: Influence of particle size. Chemical Engineering Journal, 2014, 252, 320-326.	6.6	100
59	An overview on biogas generation from anaerobic digestion of food waste. International Journal of Green Energy, 2016, 13, 119-131.	2.1	100
60	Graphene materials in green energy applications: Recent development and future perspective. Renewable and Sustainable Energy Reviews, 2020, 120, 109656.	8.2	100
61	Heterogeneous activation of peroxymonosulfate over monodispersed Co3O4/activated carbon for efficient degradation of gaseous toluene. Chemical Engineering Journal, 2018, 341, 383-391.	6.6	99
62	Catalytic oxidation of benzene over Mn modified TiO2/ZSM-5 under vacuum UV irradiation. Applied Catalysis B: Environmental, 2017, 203, 870-878.	10.8	97
63	Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Applied Energy, 2013, 102, 427-431.	5.1	96
64	UV/H 2 O 2 : An efficient aqueous advanced oxidation process for VOCs removal. Chemical Engineering Journal, 2017, 324, 44-50.	6.6	95
65	Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation. Applied Catalysis B: Environmental, 2018, 220, 78-87.	10.8	95
66	Optimization of Exhaust Emissions of a Diesel Engine Fuelled with Biodiesel. Energy & Energy	2.5	93
67	Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production. Electrochimica Acta, 2007, 52, 6707-6718.	2.6	92
68	Large-Eddy Simulation of Flow and Pollutant Dispersion in High-Aspect-Ratio Urban Street Canyons with Wall Model. Boundary-Layer Meteorology, 2008, 129, 249-268.	1.2	92
69	Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: Performance and mechanism. Applied Catalysis B: Environmental, 2016, 186, 62-68.	10.8	92
70	Intimately Contacted Ni2P on CdS Nanorods for Highly Efficient Photocatalytic H2 Evolution: New Phosphidation Route and the Interfacial Separation Mechanism of Charge Carriers. Applied Catalysis B: Environmental, 2021, 281, 119443.	10.8	90
71	Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating. Boundary-Layer Meteorology, 2010, 137, 187-204.	1.2	88
72	Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: Roles of sulfate and hydroxyl radicals. Chemical Engineering Journal, 2019, 356, 632-640.	6.6	86

#	Article	IF	Citations
73	An Electrochemical Model of a Solid Oxide Steam Electrolyzer for Hydrogen Production. Chemical Engineering and Technology, 2006, 29, 636-642.	0.9	85
74	Physical Modeling of Flow Field inside Urban Street Canyons. Journal of Applied Meteorology and Climatology, 2008, 47, 2058-2067.	0.6	85
75	Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays. Applied Surface Science, 2016, 362, 490-497.	3.1	85
76	Large-Eddy Simulation of Flow and Pollutant Transport in Street Canyons of Different Building-Height-to-Street-Width Ratios. Journal of Applied Meteorology and Climatology, 2004, 43, 1410-1424.	1.7	84
77	Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte. Journal of Power Sources, 2008, 183, 682-686.	4.0	84
78	On the correlation of air and pollutant exchange for street canyons in combined wind-buoyancy-driven flow. Atmospheric Environment, 2009, 43, 3682-3690.	1.9	82
79	g-C3N4 photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution. Applied Surface Science, 2019, 467-468, 658-665.	3.1	82
80	Fluidized-bed gasification of waste tire powders. Fuel Processing Technology, 2003, 84, 175-196.	3.7	81
81	Ozone-catalytic oxidation of gaseous benzene over MnO2/ZSM-5 at ambient temperature: Catalytic deactivation and its suppression. Chemical Engineering Journal, 2015, 264, 24-31.	6.6	79
82	Characteristics of the Synthesis of Methanol Using Biomass-Derived Syngas. Energy & Derived Syngas. Energy & Derived Syngas. 19, 305-310.	2.5	78
83	Computational formulation for the evaluation of street canyon ventilation and pollutant removal performance. Atmospheric Environment, 2008, 42, 9041-9051.	1.9	76
84	A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism. Journal of Materials Science and Technology, 2021, 85, 18-29.	5.6	75
85	Synergetic degradation of VOCs by vacuum ultraviolet photolysis and catalytic ozonation over Mn-xCe/ZSM-5. Journal of Hazardous Materials, 2019, 364, 770-779.	6.5	74
86	A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalent chromium and oxidation of oxytetracycline hydrochloride. Chemical Engineering Journal, 2021, 409, 128185.	6.6	74
87	Solar photocatalytic degradation of gaseous formaldehyde by sol–gel TiO2 thin film for enhancement of indoor air quality. Solar Energy, 2004, 77, 129-135.	2.9	72
88	Mathematical Modelling of Proton-Conducting Solid Oxide Fuel Cells and Comparison with Oxygen-Ion-Conducting Counterpart. Fuel Cells, 2007, 7, 269-278.	1.5	72
89	Mathematical modeling of ammonia-fed solid oxide fuel cells with different electrolytes. International Journal of Hydrogen Energy, 2008, 33, 5765-5772.	3.8	72
90	Electrochemical modeling and parametric study of methane fed solid oxide fuel cells. Energy Conversion and Management, 2009, 50, 268-278.	4.4	72

#	Article	IF	Citations
91	Enhanced degradation of gaseous benzene under vacuum ultraviolet (VUV) irradiation over TiO2 modified by transition metals. Chemical Engineering Journal, 2015, 259, 534-541.	6.6	72
92	Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell. Journal of Power Sources, 2017, 349, 75-83.	4.0	70
93	Effects of Urban Vegetation on Urban Air Quality. Landscape Research, 2011, 36, 173-188.	0.7	69
94	Modeling of methane fed solid oxide fuel cells: Comparison between proton conducting electrolyte and oxygen ion conducting electrolyte. Journal of Power Sources, 2008, 183, 133-142.	4.0	67
95	Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant. Energy, 2017, 120, 1-11.	4.5	67
96	Graphene-carbon nanotube composite aerogel with Ru@Pt nanoparticle as a porous electrode for direct methanol microfluidic fuel cell. Applied Energy, 2018, 217, 258-265.	5.1	64
97	A high performance dual electrolyte microfluidic reactor for the utilization of CO 2. Applied Energy, 2017, 194, 549-559.	5.1	63
98	Electrochemical modeling of hydrogen production by proton-conducting solid oxide steam electrolyzer. International Journal of Hydrogen Energy, 2008, 33, 4040-4047.	3.8	62
99	Enhanced photocatalytic degradation of methylene blue under vacuum ultraviolet irradiation. Catalysis Today, 2013, 201, 189-194.	2.2	61
100	Microfluidic fuel cells with different types of fuels: A prospective review. Renewable and Sustainable Energy Reviews, 2021, 141, 110806.	8.2	61
101	A mixed-pH dual-electrolyte microfluidic aluminum–air cell with high performance. Applied Energy, 2017, 185, 1303-1308.	5.1	60
102	Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability. Applied Energy, 2019, 251, 113342.	5.1	60
103	Visible-light-assisted photocatalytic degradation of gaseous formaldehyde by parallel-plate reactor coated with Cr ion-implanted TiO2 thin film. Solar Energy Materials and Solar Cells, 2007, 91, 54-61.	3.0	59
104	Photocatalytic destruction of air pollutants with vacuum ultraviolet (VUV) irradiation. Catalysis Today, 2011, 175, 310-315.	2.2	59
105	Energy analysis of hydrogen and electricity production from aluminum-based processes. Applied Energy, 2012, 90, 100-105.	5.1	58
106	Theoretical modelling of the electrode thickness effect on maximum power point of dyeâ€sensitized solar cell. Canadian Journal of Chemical Engineering, 2008, 86, 35-42.	0.9	57
107	In-situ synthesis of heterojunction TiO2/MnO2 nanostructure with excellent performance in vacuum ultraviolet photocatalytic oxidation of toluene. Applied Catalysis B: Environmental, 2019, 259, 118034.	10.8	57
108	Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield. Biotechnology for Biofuels, 2012, 5, 19.	6.2	55

#	Article	IF	Citations
109	Development and characteristics of a membraneless microfluidic fuel cell array. Electrochimica Acta, 2014, 135, 467-477.	2.6	55
110	Powering future body sensor network systems: A review of power sources. Biosensors and Bioelectronics, 2020, 166, 112410.	5.3	55
111	Theoretical analysis of reversible solid oxide fuel cell based on proton-conducting electrolyte. Journal of Power Sources, 2008, 177, 369-375.	4.0	54
112	The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens. BMC Infectious Diseases, 2020, 20, 127.	1.3	54
113	Photocatalytic reforming of glucose over La doped alkali tantalate photocatalysts for H2 production. Catalysis Communications, 2010, 12, 184-187.	1.6	53
114	Chaotic flow-based fuel cell built on counter-flow microfluidic network: Predicting the over-limiting current behavior. Journal of Power Sources, 2011, 196, 9391-9397.	4.0	53
115	Photocatalytic reforming of C3-polyols for H2 production. Applied Catalysis B: Environmental, 2011, 106, 681-688.	10.8	53
116	Catalytic oxidation of VOCs over Mn/TiO2/activated carbon under 185â€nm VUV irradiation. Chemosphere, 2018, 208, 550-558.	4.2	53
117	Innovative paper-based Al-air batteries as a low-cost and green energy technology for the miniwatt market. Journal of Power Sources, 2019, 414, 278-282.	4.0	53
118	Pollutant dispersion in urban street canopies. Atmospheric Environment, 2001, 35, 2033-2043.	1.9	52
119	Fluorinated TiO2 coupling with $\hat{l}\pm$ -MnO2 nanowires supported on different substrates for photocatalytic VOCs abatement under vacuum ultraviolet irradiation. Applied Catalysis B: Environmental, 2021, 280, 119388.	10.8	52
120	Z-scheme Au decorated carbon nitride/cobalt tetroxide plasmonic heterojunction photocatalyst for catalytic reduction of hexavalent chromium and oxidation of Bisphenol A. Journal of Hazardous Materials, 2021, 410, 124539.	6.5	52
121	A Review on Ozone Evolution and Its Relationship with Boundary Layer Characteristics in Urban Environments. Water, Air, and Soil Pollution, 2011, 214, 13-36.	1.1	51
122	Efficient photocatalytic oxidation of gaseous toluene over F-doped TiO2 in a wet scrubbing process. Chemical Engineering Journal, 2020, 386, 121025.	6.6	51
123	Photocatalytic reduction of CO2 and degradation of Bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight. Carbon, 2022, 193, 272-284.	5.4	51
124	A Direct Ammonia Microfluidic Fuel Cell using NiCu Nanoparticles Supported on Carbon Nanotubes as an Electrocatalyst. ChemSusChem, 2018, 11, 2889-2897.	3.6	50
125	Enhanced photoelectrocatalytic hydrogen production via Bi/BiVO4 photoanode under visible light irradiation. Applied Catalysis B: Environmental, 2019, 258, 117954.	10.8	50
126	Counter-flow formic acid microfluidic fuel cell with high fuel utilization exceeding 90%. Applied Energy, 2015, 160, 930-936.	5.1	49

#	Article	IF	CITATIONS
127	A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization. Renewable Energy, 2016, 95, 277-285.	4.3	49
128	Towards orientation-independent performance of membraneless microfluidic fuel cell: Understanding the gravity effects. Applied Energy, 2012, 90, 80-86.	5.1	48
129	Modeling of a microfluidic electrochemical cell for CO2 utilization and fuel production. Applied Energy, 2013, 102, 1057-1062.	5.1	48
130	Mechanistic insights into toluene degradation under VUV irradiation coupled with photocatalytic oxidation. Journal of Hazardous Materials, 2020, 399, 122967.	6.5	48
131	Electrochemical modeling of ammonia-fed solid oxide fuel cells based on proton conducting electrolyte. Journal of Power Sources, 2008, 183, 687-692.	4.0	47
132	Combining Al-air battery with paper-making industry, a novel type of flexible primary battery technology. Electrochimica Acta, 2019, 319, 947-957.	2.6	46
133	Photocatalytic reforming of C3-polyols for H2 production. Applied Catalysis B: Environmental, 2011, 106, 689-696.	10.8	45
134	Highâ€Performance Aqueous Na–Zn Hybrid Ion Battery Boosted by "Waterâ€Inâ€Gel―Electrolyte. Advanc Functional Materials, 2021, 31, 2008783.	ed 7.8	45
135	Novel Ag/p-AgBr/n-BiVO ₄ Plasmonic Heterojunction Photocatalyst: Study on the Excellent Photocatalytic Performance and Photocatalytic Mechanism. ACS Applied Energy Materials, 2019, 2, 694-704.	2.5	44
136	On the prediction of air and pollutant exchange rates in street canyons of different aspect ratios using large-eddy simulation. Atmospheric Environment, 2005, , .	1.9	43
137	Street-level concentrations of nitrogen dioxide and suspended particulate matter in Hong Kong. Atmospheric Environment, 1998, 33, $1-11$.	1.9	42
138	Vacuum ultraviolet (VUV)-based photocatalytic oxidation for toluene degradation over pure CeO2. Chemical Engineering Science, 2019, 200, 203-213.	1.9	42
139	An improved electrochemical model for the NH3 fed proton conducting solid oxide fuel cells at intermediate temperatures. Journal of Power Sources, 2008, 185, 233-240.	4.0	41
140	Improved land cover and emission factors for modeling biogenic volatile organic compounds emissions from Hong Kong. Atmospheric Environment, 2010, 44, 1456-1468.	1.9	41
141	Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons. Journal of Environmental Sciences, 2012, 24, 2091-2103.	3.2	41
142	Air-breathing membraneless laminar flow-based fuel cells: Do they breathe enough oxygen?. Applied Energy, 2013, 104, 400-407.	5.1	41
143	A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency. Applied Energy, 2015, 147, 456-465.	5.1	41
144	A facile VUV/H2O system without auxiliary substances for efficient degradation of gaseous toluene. Chemical Engineering Journal, 2018, 334, 1422-1429.	6.6	41

#	Article	IF	Citations
145	Synergistically catalytic oxidation of toluene over Mn modified g-C3N4/ZSM-4 under vacuum UV irradiation. Journal of Hazardous Materials, 2018, 349, 91-100.	6.5	41
146	A review on the removal of nitrogen oxides from polluted flow by bioreactors. Environmental Reviews, 2010, 18, 175-189.	2.1	40
147	A flexible paper-based hydrogen fuel cell for small power applications. International Journal of Hydrogen Energy, 2019, 44, 29680-29691.	3.8	40
148	Enabling high-concentrated fuel operation of fuel cells with microfluidic principles: A feasibility study. Applied Energy, 2013, 112, 1131-1137.	5.1	39
149	Toluene degradation over Mn-TiO2/CeO2 composite catalyst under vacuum ultraviolet (VUV) irradiation. Chemical Engineering Science, 2019, 195, 985-994.	1.9	39
150	Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis. Journal of Materials Science and Technology, 2022, 101, 37-48.	5.6	39
151	Hydrodynamic focusing in microfluidic membraneless fuel cells: Breaking the trade-off between fuel utilization and current density. International Journal of Hydrogen Energy, 2011, 36, 11075-11084.	3.8	38
152	Laminar flow-based fuel cell working under critical conditions: The effect of parasitic current. Applied Energy, 2012, 90, 87-93.	5.1	38
153	A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel. Applied Energy, 2016, 184, 659-669.	5.1	38
154	Liquid-free Al-air batteries with paper-based gel electrolyte: A green energy technology for portable electronics. Journal of Power Sources, 2019, 437, 226896.	4.0	38
155	Synergetic effect of vacuum ultraviolet photolysis and ozone catalytic oxidation for toluene degradation over MnO2-rGO composite catalyst. Chemical Engineering Science, 2021, 231, 116288.	1.9	38
156	Efficient MnOx/SiO2@AC catalyst for ozone-catalytic oxidation of gaseous benzene at ambient temperature. Applied Surface Science, 2019, 470, 439-447.	3.1	37
157	On the mechanism of air pollutant re-entrainment in two-dimensional idealized street canyons. Atmospheric Environment, 2011, 45, 4763-4769.	1.9	36
158	Integrating chemical kinetics with CFD modeling for autothermal reforming of biogas. International Journal of Hydrogen Energy, 2009, 34, 9076-9086.	3.8	35
159	Photocatalytic decolorization of anthraquinonic dye by TiO2 thin film under UVA and visible-light irradiation. Chemical Engineering Journal, 2007, 129, 153-159.	6.6	34
160	Towards the digitalisation of porous energy materials: evolution of digital approaches for microstructural design. Energy and Environmental Science, 2021, 14, 2549-2576.	15.6	34
161	Abatement of Toluene in the Plasma-Driven Catalysis: Mechanism and Reaction Kinetics. IEEE Transactions on Plasma Science, 2011, 39, 877-882.	0.6	33
162	The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sciences, 2017, 67, A1-A14.	1.5	33

#	Article	IF	Citations
163	A dual fuel microfluidic fuel cell utilizing solar energy and methanol. Journal of Power Sources, 2019, 409, 58-65.	4.0	33
164	Insights into the photocatalysis mechanism of the novel 2D/3D Z-Scheme g-C3N4/SnS2 heterojunction photocatalysts with excellent photocatalytic performances. Journal of Hazardous Materials, 2021, 402, 123711.	6.5	33
165	Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation. Applied Energy, 2017, 204, 948-957.	5.1	32
166	Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell. Solid State Sciences, 2018, 75, 21-26.	1.5	32
167	Energy and exergy analysis of microfluidic fuel cell. International Journal of Hydrogen Energy, 2013, 38, 6526-6536.	3.8	31
168	Impacts of environmental factors on urban heating. Journal of Environmental Sciences, 2010, 22, 1903-1909.	3.2	30
169	Photocatalytic reforming of ethanol to H2 and CH4 over ZnSn(OH)6 nanocubes. International Journal of Hydrogen Energy, 2011, 36, 1524-1530.	3.8	30
170	Development of a Clean Biodiesel Fuel in Hong Kong Using Recycled Oil. Water, Air, and Soil Pollution, 2001, 130, 277-282.	1.1	29
171	Effect of guide wall on the potential of a solar chimney power plant. Renewable Energy, 2016, 96, 209-219.	4.3	29
172	A switchable pH-differential unitized regenerative fuel cell with high performance. Journal of Power Sources, 2016, 314, 76-84.	4.0	28
173	Wet scrubber coupled with heterogeneous UV/Fenton for enhanced VOCs oxidation over Fe/ZSM-5 catalyst. Chemosphere, 2019, 227, 401-408.	4.2	28
174	Urban heat island and its effect on the cooling and heating demands in urban and suburban areas of Hong Kong. Theoretical and Applied Climatology, 2011, 103, 441-450.	1.3	27
175	A computational study of bifunctional oxygen electrode in air-breathing reversible microfluidic fuel cells. International Journal of Hydrogen Energy, 2011, 36, 9231-9241.	3.8	27
176	Numerical investigation and optimization of vapor-feed microfluidic fuel cells with high fuel utilization. Electrochimica Acta, 2018, 261, 127-136.	2.6	27
177	Highly enhanced performance of heterojunction Bi2S3/BiVO4 photoanode for photoelectrocatalytic hydrogen production under solar light irradiation. Chemical Engineering Science, 2020, 211, 115266.	1.9	27
178	Carbon doped ultra-small TiO2 coated on carbon cloth for efficient photocatalytic toluene degradation under visible LED light irradiation. Applied Surface Science, 2020, 527, 146780.	3.1	27
179	Effect of oxygen mobility in the lattice of Au/TiO2 on formaldehyde oxidation. Kinetics and Catalysis, 2012, 53, 239-246.	0.3	26
180	Toward a mechanistic understanding of microfluidic droplet-based extraction and separation of lanthanides. Chemical Engineering Journal, 2019, 356, 673-679.	6.6	26

#	Article	IF	Citations
181	Printing Al-air batteries on paper for powering disposable printed electronics. Journal of Power Sources, 2020, 450, 227685.	4.0	26
182	A concentration correction scheme for Lagrangian particle model and its application in street canyon air dispersion modelling. Atmospheric Environment, 2001, 35, 5779-5788.	1.9	25
183	Highâ€Performance MnO ₂ /Al Battery with In Situ Electrochemically Reformed Al <i>_x</i> MnO ₂ Nanosphere Cathode. Small Methods, 2021, 5, e2100491.	4.6	25
184	Constructing an ohmic junction of copper@ cuprous oxide nanocomposite with plasmonic enhancement for photocatalysis. Journal of Colloid and Interface Science, 2022, 616, 163-176.	5.0	25
185	Development of a finite element solution for the unsteady Navier–Stokes equations using projection method and fractional-Î,-scheme. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 4301-4317.	3.4	24
186	An overview of emissions trading and its prospects in Hong Kong. Environmental Science and Policy, 2009, 12, 92-101.	2.4	24
187	Modeling of an air cathode for microfluidic fuel cells: Transport and polarization behaviors. International Journal of Hydrogen Energy, 2011, 36, 14704-14718.	3.8	24
188	TiO2 nanotube arrays modified with nanoparticles of platinum group metals (Pt, Pd, Ru): enhancement on photoelectrochemical performance. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	24
189	Flexible direct formate paper fuel cells with high performance and great durability. Journal of Power Sources, 2021, 490, 229526.	4.0	24
190	A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation. Journal of Environmental Management, 2022, 307, 114559.	3.8	24
191	Plasma-Driven Catalysis Process for Toluene Abatement: Effect of Water Vapor. IEEE Transactions on Plasma Science, 2011, 39, 576-580.	0.6	23
192	Recent Development of VUV-Based Processes for Air Pollutant Degradation. Frontiers in Environmental Science, 2016, 4, .	1.5	23
193	Study on the Photocatalysis Mechanism of the Z-Scheme Cobalt Oxide Nanocubes/Carbon Nitride Nanosheets Heterojunction Photocatalyst with High Photocatalytic Performances. Journal of Hazardous Materials, 2021, 402, 123839.	6.5	23
194	Highâ€Energy SWCNT Cathode for Aqueous Alâ€Ion Battery Boosted by Multiâ€Ion Intercalation Chemistry. Advanced Energy Materials, 2021, 11, 2101514.	10.2	23
195	Theoretical Graetz–Damköhler modeling of an air-breathing microfluidic fuel cell. Journal of Power Sources, 2013, 231, 1-5.	4.0	22
196	Boosting the performance of formic acid microfluidic fuel cell: Oxygen annealing enhanced Pd@graphene electrocatalyst. International Journal of Hydrogen Energy, 2016, 41, 10249-10254.	3.8	22
197	Numerical study on the ozone formation inside street canyons using a chemistry box model. Journal of Environmental Sciences, 2008, 20, 832-837.	3.2	21
198	Modeling of Parasitic Hydrogen Evolution Effects in an Aluminumâ ² Air Cell. Energy & Energy	2.5	21

#	Article	IF	Citations
199	Density-induced asymmetric pair of Dean vortices and its effects on mass transfer in a curved microchannel with two-layer laminar stream. Chemical Engineering Journal, 2011, 171, 216-223.	6.6	21
200	A high-performance aluminum-feed microfluidic fuel cell stack. Journal of Power Sources, 2016, 336, 427-436.	4.0	21
201	GO-modified flexible polymer nanocomposites fabricated via 3D stereolithography. Frontiers of Chemical Science and Engineering, 2019, 13, 736-743.	2.3	21
202	Greenhouse gas emissions in Hong Kong. Atmospheric Environment, 2000, 34, 4487-4498.	1.9	20
203	Importance of pressure gradient in solid oxide fuel cell electrodes for modeling study. Journal of Power Sources, 2008, 183, 668-673.	4.0	20
204	BTZ-copolymer loaded graphene aerogel as new type Green and metal-free visible light photocatalyst. Applied Catalysis B: Environmental, 2019, 240, 50-63.	10.8	20
205	Computational fluid dynamics simulation of the wind flow over an airport terminal building. Journal of Zhejiang University: Science A, 2010, 11, 389-401.	1.3	19
206	Chemical and transport behaviors in a microfluidic reformer with catalytic-support membrane for efficient hydrogen production and purification. International Journal of Hydrogen Energy, 2012, 37, 2614-2622.	3.8	19
207	Modelling of Motor Vehicle Fuel Consumption and Emissions Using a Power-Based Model. Environmental Monitoring and Assessment, 2000, 65, 21-29.	1.3	18
208	Toward the scaling up of microfluidic fuel cells, investigation and optimization of the aggravated cathode flooding problem. Electrochimica Acta, 2016, 222, 312-322.	2.6	18
209	Doubling the power output of a Mg-air battery with an acid-salt dual-electrolyte configuration. Journal of Power Sources, 2021, 506, 230144.	4.0	18
210	Nitric oxide removal by wastewater bacteria in a biotrickling filter. Journal of Environmental Sciences, 2014, 26, 555-565.	3.2	17
211	Novel studies on hydrogen, fuel cell and battery energy systems. International Journal of Energy Research, 2011, 35, 1-1.	2.2	16
212	Recent developments of titanium dioxide materials for aquatic antifouling application. Journal of Marine Science and Technology, 2021, 26, 301-321.	1.3	16
213	Fluid dynamics and heat transfer in cold water thawing. Journal of Food Engineering, 2007, 78, 1221-1227.	2.7	15
214	The applications of graphene-based materials in pollutant control and disinfection. Progress in Solid State Chemistry, 2017, 45-46, 1-8.	3.9	14
215	Non-aqueous Al-ion batteries: cathode materials and corresponding underlying ion storage mechanisms. Rare Metals, 2022, 41, 762-774.	3.6	14
216	Improved estimators for the standard deviations of horizontal wind fluctuations. Atmospheric Environment, 1996, 30, 2457-2461.	1.9	13

#	Article	IF	Citations
217	Numerical Study on Flow over Buildings in Street Canyon. Journal of Environmental Engineering, ASCE, 2001, 127, 369-376.	0.7	13
218	Removal of Toluene Using UV-Irradiated and Nonthermal Plasma–Driven Photocatalyst System. Journal of Environmental Engineering, ASCE, 2010, 136, 1231-1236.	0.7	13
219	A Theoretical Study on Photocatalytic Fuel Cell. Energy Procedia, 2014, 61, 246-249.	1.8	13
220	Mathematical Modelling of the Performance of a Solar Chimney Power Plant with Divergent Chimneys. Energy Procedia, 2017, 110, 440-445.	1.8	13
221	Boosting cell performance and fuel utilization efficiency in a solar assisted methanol microfluidic fuel cell. International Journal of Hydrogen Energy, 2020, 45, 21796-21807.	3.8	13
222	Low-cost and efficient Mn/CeO2 catalyst for photocatalytic VOCs degradation via scalable colloidal solution combustion synthesis method. Journal of Materials Science and Technology, 2022, 116, 169-179.	5.6	13
223	High-performance solid-state metal-air batteries with an innovative dual-gel electrolyte. International Journal of Hydrogen Energy, 2022, 47, 15024-15034.	3.8	13
224	Evolution of Discharge Products on Carbon Nanotube Cathodes in Li–O ₂ Batteries Unraveled by Molecular Dynamics and Density Functional Theory. ACS Catalysis, 2022, 12, 5048-5059.	5.5	13
225	UV light-induced oxygen doping in graphitic carbon nitride with suppressed deep trapping for enhancement in CO2 photoreduction activity. Journal of Materials Science and Technology, 2023, 133, 135-144.	5.6	13
226	Development of a scalable finite element solution to the Navier?Stokes equations. Computational Mechanics, 2003, 32, 185-198.	2.2	12
227	Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food. Journal Physics D: Applied Physics, 2005, 38, 477-482.	1.3	12
228	On the comparison of the ventilation performance of street canyons of different aspect ratios and Richardson number. Building Simulation, 2009, 2, 53-61.	3.0	12
229	Effect of Divergent Chimneys on the Performance of a Solar Chimney Power Plant. Energy Procedia, 2017, 105, 7-13.	1.8	12
230	Solid-state Al-air battery with an ethanol gel electrolyte. Green Energy and Environment, 2023, 8, 1117-1127.	4.7	12
231	Effect of terrain and building structures on the airflow in an airport. Journal of Zhejiang University: Science A, 2012, 13, 461-468.	1.3	11
232	A telescopic divergent chimney for power generation based on forced air movement: Principle and theoretical formulation. Applied Energy, 2014, 136, 873-880.	5.1	11
233	A high specific capacity membraneless aluminum-air cell operated with an inorganic/organic hybrid electrolyte. Journal of Power Sources, 2016, 336, 19-26.	4.0	11
234	Ru@Pt core shell nanoparticle on graphene carbon nanotube composite aerogel as a flow through anode for direct methanol microfluidic fuel cell. Energy Procedia, 2017, 142, 1522-1527.	1.8	11

#	Article	IF	CITATIONS
235	Removal of Formaldehyde Using Highly Active Pt/TiO2Catalysts without Irradiation. International Journal of Photoenergy, 2013, 2013, 1-6.	1.4	10
236	A counter-flow-based dual-electrolyte protocol for multiple electrochemical applications. Applied Energy, 2018, 217, 241-248.	5.1	10
237	Microfluidics-based pH-differential reactor for CO2 utilization: A mathematical study. Applied Energy, 2018, 227, 525-532.	5.1	10
238	Mechanistic study of vacuum UV catalytic oxidation for toluene degradation over CeO2 nanorods. Green Energy and Environment, 2022, 7, 533-544.	4.7	10
239	Niâ€Fe Layered Double Hydroxide Nanosheets Supported on Exfoliated Graphite for Efficient Urea Oxidation in Direct Urea Fuel Cells. ChemSusChem, 2022, 15, .	3.6	10
240	Parallel-plate solar photocatalytic reactor for air purification: Semi-empirical correlation, modeling, and optimization. Solar Energy, 2006, 80, 949-955.	2.9	9
241	Modeling and analysis of an aluminum-water electrochemical generator for simultaneous production of electricity and hydrogen. International Journal of Energy Research, 2011, 35, 44-51.	2.2	9
242	Scaling Up Microfluidic Aluminum-Air Cell with Electrochemical Impedance Spectroscopy (EIS) Assisted Performance Analysis. Journal of the Electrochemical Society, 2016, 163, F1032-F1037.	1.3	9
243	Sodium titanate nanowires as a stable and easily handled precursor for the shape controlled synthesis of TiO2and their photocatalytic performance. CrystEngComm, 2014, 16, 616-626.	1.3	8
244	A Numerical Study on Microfluidic Fuel Cell: Improving Fuel Utilization and Fuel Operation Concentration. Energy Procedia, 2014, 61, 250-253.	1.8	8
245	Novel urchin-like Fe2O3@SiO2@TiO2 microparticles with magnetically separable and photocatalytic properties. RSC Advances, 2015, 5, 55363-55371.	1.7	8
246	A Low-Cost Mechanically Rechargeable Aluminum–Air Cell for Energy Conversion Using Low-Grade Aluminum Foil. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	1.1	8
247	Characterization of a microfluidic reactor for CO2 conversion with electrolyte recycling. Renewable Energy, 2017, 102, 15-20.	4.3	8
248	Numerical Modelling of the Compressible Airflow in a Solar-Waste-Heat Chimney Power Plant. Energy Procedia, 2017, 142, 642-647.	1.8	8
249	A Photocatalytic Rotating Disc Reactor with TiO2 Nanowire Arrays Deposited for Industrial Wastewater Treatment. Molecules, 2017, 22, 337.	1.7	8
250	Photocatalytic Oxidation of Gaseous Benzene under 185 nm UV Irradiation. International Journal of Photoenergy, 2013, 2013, 1-6.	1.4	7
251	A Counter-flow Microfluidic Fuel Cell Achieving Concentrated Fuel Operation. Energy Procedia, 2015, 75, 1990-1995.	1.8	7
252	Polymeric Templating Synthesis of Anatase TiO ₂ Nanoparticles from Lowâ€Cost Inorganic Titanium Sources. ChemistrySelect, 2017, 2, 702-706.	0.7	7

#	Article	IF	CITATIONS
253	Integrating micro metalâ€air batteries in lateral flow test for pointâ€ofâ€care applications. International Journal of Energy Research, 2022, 46, 137-146.	2.2	7
254	Prediction of transient turbulent dispersion by CFD–statistical hybrid modeling method. Atmospheric Environment, 2005, 39, 6345-6351.	1.9	6
255	Modeling of a micro auto-electrolytic cell for hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 10002-10009.	3.8	6
256	A printed paper-based Zn-air/Ag hybrid battery with switchable working modes. Electrochimica Acta, 2021, 396, 139237.	2.6	6
257	Numerical Simulation of Street Canyon Flows with Simple Building Geometries. Journal of Environmental Engineering, ASCE, 2005, 131, 1099-1105.	0.7	5
258	Numerical simulations of flow-field interactions between moving and stationary objects in idealized street canyon settings. Journal of Fluids and Structures, 2006, 22, 315-326.	1.5	5
259	Parallel FEM LES with one-equation subgrid-scale model for incompressible flows. International Journal of Computational Fluid Dynamics, 2010, 24, 37-49.	0.5	5
260	Vacuum Ultraviolet-Irradiated Photocatalysis: Advanced Process for Toluene Abatement. Journal of Environmental Engineering, ASCE, 2011, 137, 996-1001.	0.7	5
261	Genome Sequence of Pseudomonas mendocina DLHK, Isolated from a Biotrickling Reactor. Journal of Bacteriology, 2012, 194, 6326-6326.	1.0	5
262	Durability and stability of vapor-feed microfluidic fuel cells, a preliminary study. Energy Procedia, 2017, 142, 1340-1345.	1.8	5
263	Aluminum-air battery with cotton substrate: Controlling the discharge capacity by electrolyte pre-deposition. Green Energy and Environment, 2023, 8, 757-766.	4.7	5
264	Paper-based aqueous Al ion battery with water-in-salt electrolyte. Green Energy and Environment, 2023, 8, 1380-1388.	4.7	5
265	Accelerated oxidation of VOCs via vacuum ultraviolet photolysis coupled with wet scrubbing process. Journal of Environmental Sciences, 2023, 134, 55-64.	3.2	5
266	Simulations of wind field and other meteorological parameters in the complex terrain of Hong Kong using MC2 – A mesoscale numerical model. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83, 71-82.	1.7	4
267	Finite element solution to passive scalar transport behind line sources under neutral and unstable stratification. International Journal for Numerical Methods in Fluids, 2006, 50, 623-648.	0.9	4
268	Ozone diurnal characteristics in areas with different urbanizations. International Journal of Environment and Pollution, 2012, 49, 100.	0.2	4
269	Study of turbulence and pollutant dispersion in a neutrally and unstably stratified atmosphere using a second-order closure boundary-layer model. International Journal of Environment and Pollution, 2001, 16, 16.	0.2	3
270	Turbulent transport of passive scalar behind line sources in an unstably stratified open channel flow. International Journal of Heat and Mass Transfer, 2006, 49, 4305-4324.	2.5	3

#	Article	IF	Citations
271	A High Performance Dual Electrolyte Aluminium-air Cell. Energy Procedia, 2015, 75, 1983-1989.	1.8	3
272	Bifunctional Mn2+ grafted Ultra-small TiO2 nanoparticles on carbon cloth with efficient toluene degradation in a continuous flow reactor. Chemical Engineering Science, 2022, 250, 117389.	1.9	3
273	Air Pollution Impact Due to Road Transportation in Hong Kong in the Next Decade. HKIE Transactions, 1995, 2, 39-47.	1.9	2
274	Numerical study of atmospheric dispersion under unstably stratified atmosphere. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68, 767-779.	1.7	2
275	Numerical Modelling of a Dual Electrolyte Membraneless Electrolytic Cell for CO 2 to Fuel Conversion. Energy Procedia, 2017, 105, 4053-4058.	1.8	2
276	Orthogonal Array Design for Biodiesel Production Optimization - Using Ultrasonic-Assisted Transesterification of Camelina Sativa L. Crantz Oil. , 2011, , .		2
277	On plume meandering in unstable stratification. Atmospheric Environment, 2005, 39, 2995-2999.	1.9	1
278	Performance Analysis of a Linux Pc Cluster Using a Direct Numerical Simulation of Fluid Turbulence Code. International Journal of High Performance Computing Applications, 2005, 19, 365-374.	2.4	1
279	Performance analysis of a parallel finite element solution to the direct numerical simulation of fluid turbulence on Linux PC clusters. Applied Mathematics and Computation, 2006, 172, 731-743.	1.4	1
280	An efficient approach to transient turbulent dispersion modeling by CFD–statistical analysis of a many-puff system. Fluid Dynamics Research, 2009, 41, 035512.	0.6	1
281	In situ photogalvanic acceleration of optofluidic kinetics: a new paradigm for advanced photocatalytic technologies. RSC Advances, 2015, 5, 791-796.	1.7	1
282	Impact of Guide Wall Geometry on the Power Output of a Solar Chimney Power Plant. Energy Procedia, 2016, 88, 414-421.	1.8	1
283	Microfluidic Aluminum-air Cell with Methanol-based Anolyte. Energy Procedia, 2017, 105, 4691-4697.	1.8	1
284	An Up-scaling Strategy for Counter-flow Based Microfluidic Network: A Numerical Study. Energy Procedia, 2017, 142, 661-666.	1.8	1
285	Highâ€Energy SWCNT Cathode for Aqueous Alâ€Ion Battery Boosted by Multiâ€Ion Intercalation Chemistry (Adv. Energy Mater. 39/2021). Advanced Energy Materials, 2021, 11, 2170155.	10.2	1
286	Assessment of the Air Pollution Problems inside Public Transport Interchanges in Hong Kong. HKIE Transactions, 1998, 5, 58-65.	1.9	0
287	Modelling of Exhaust Emissions from Spark Ignition Vehicles. HKIE Transactions, 2000, 7, 51-54.	1.9	0
288	The development of biomass gasification technology towards market penetration in China. International Journal of Global Energy Issues, 2001, 15, 132.	0.2	0

#	Article	IF	CITATIONS
289	A Switchable pH-differential Reactor with High Reactivity and Efficiency for CO2 Utilization. Energy Procedia, 2016, 88, 634-641.	1.8	0
290	A Stable Numerical Method for the Time Dependent Navier-Stokes Equations and Its Application in Street Canyon Flows., 2003,, 801-802.		0
291	Turbulent Transport of Passive Scalar Emitted from Line Sources in an Open Channel Flow., 2006,, 847-848.		0
292	Mesoscale meteorological modelling for Hong Kong-application of the MC2 model. Journal of Environmental Sciences, 2002, 14, 156-64.	3.2	0