List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6662093/publications.pdf Version: 2024-02-01

		29994	20900
226	14,755	54	115
papers	citations	h-index	g-index
220	220	220	7024
239	239	239	7924
all docs	docs citations	times ranked	citing authors

FRIC LAUCA

#	Article	lF	CITATIONS
1	Order and information in the patterns of spinning magnetic micro-disks at the air-water interface. Science Advances, 2022, 8, eabk0685.	4.7	20
2	Jet-driven viscous locomotion of confined thermoresponsive microgels. Applied Physics Letters, 2022, 120, 104101.	1.5	2
3	Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature, 2022, 605, 681-686.	13.7	50
4	Elastohydrodynamic Synchronization of Rotating Bacterial Flagella. Physical Review Letters, 2022, 128,	2.9	5
5	Rebound and scattering of motile <i>Chlamydomonas</i> algae in confined chambers. Soft Matter, 2021, 17, 4857-4873.	1.2	10
6	Hydrodynamic synchronization in strong confinement. Physical Review E, 2021, 103, 022403.	0.8	4
7	Zigzag instability of biased pusher swimmers. Europhysics Letters, 2021, 133, 44002.	0.7	4
8	The fluid dynamics of collective vortex structures of plant-animal worms. Journal of Fluid Mechanics, 2021, 914, .	1.4	6
9	Energetics of synchronization for model flagella and cilia. Physical Review E, 2021, 103, 042419.	0.8	6
10	Geometric phase methods with Stokes theorem for a general viscous swimmer. Journal of Fluid Mechanics, 2021, 916, .	1.4	3
11	Front-back asymmetry controls the impact of viscoelasticity on helical swimming. Physical Review Fluids, 2021, 6, .	1.0	10
12	Direct measurement of unsteady microscale Stokes flow using optically driven microspheres. Physical Review Fluids, 2021, 6, .	1.0	7
13	The bank of swimming organisms at the micron scale (BOSO-Micro). PLoS ONE, 2021, 16, e0252291.	1.1	22
14	Rechargeable self-assembled droplet microswimmers driven by surface phase transitions. Nature Physics, 2021, 17, 1050-1055.	6.5	23
15	Asymptotic theory of hydrodynamic interactions between slender filaments. Physical Review Fluids, 2021, 6, .	1.0	6
16	Fluid flow in the sarcomere. Archives of Biochemistry and Biophysics, 2021, 706, 108923.	1.4	6
17	Hydrodynamics and direction change of tumbling bacteria. PLoS ONE, 2021, 16, e0254551.	1.1	1
18	Dynamics of a helical swimmer crossing viscosity gradients. Physical Review Fluids, 2021, 6, .	1.0	10

#	Article	IF	CITATIONS
19	Purely viscous acoustic propulsion of bimetallic rods. Physical Review Fluids, 2021, 6, .	1.0	10
20	A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice. Biophysical Journal, 2021, 120, 4079-4090.	0.2	5
21	Microswimming in viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, 2021, 297, 104655.	1.0	47
22	Swirling Instability of the Microtubule Cytoskeleton. Physical Review Letters, 2021, 126, 028103.	2.9	24
23	Fluid Mechanics of Mosaic Ciliated Tissues. Physical Review Letters, 2021, 127, 198102.	2.9	6
24	Stabilizing viscous extensional flows using reinforcement learning. Physical Review E, 2021, 104, 055108.	0.8	3
25	Hydrodynamic interactions between a point force and a slender filament. Physical Review Fluids, 2021, 6, .	1.0	1
26	Active rotational dynamics of a self-diffusiophoretic colloidal motor. Soft Matter, 2020, 16, 1236-1245.	1.2	9
27	Spontaneous onset of convection in a uniform phoretic channel. Soft Matter, 2020, 16, 1259-1269.	1.2	8
28	Self-organisation and convection of confined magnetotactic bacteria. Scientific Reports, 2020, 10, 13578.	1.6	9
29	Biological Background. , 2020, , 3-11.		Ο
30	The Fluid Dynamics of Microscopic Locomotion. , 2020, , 12-28.		0
31	The Waving Sheet Model. , 2020, , 29-44.		0
32	The Squirmer Model. , 2020, , 45-62.		0
33	Flagella and the Physics of Viscous Propulsion. , 2020, , 65-76.		Ο
34	Hydrodynamics of Slender Filaments. , 2020, , 77-96.		0
35	Waving of Eukaryotic Flagella. , 2020, , 97-119.		0
36	Rotation of Bacterial Flagellar Filaments. , 2020, , 120-138.		0

#	Article	IF	CITATIONS
37	Flows and Stresses Induced by Cells. , 2020, , 139-156.		Ο
38	Swimming Cells in Flows. , 2020, , 159-185.		0
39	Self-Propulsion and Surfaces. , 2020, , 186-225.		0
40	Hydrodynamic Synchronisation. , 2020, , 226-268.		0
41	Diffusion and Noisy Swimming. , 2020, , 269-290.		Ο
42	Hydrodynamics of Collective Locomotion. , 2020, , 291-314.		0
43	Locomotion and Transport in Complex Fluids. , 2020, , 315-352.		ο
44	Light-switchable propulsion of active particles with reversible interactions. Nature Communications, 2020, 11, 2628.	5.8	55
45	Geometrical Constraints on the Tangling of Bacterial Flagellar Filaments. Scientific Reports, 2020, 10, 8406.	1.6	4
46	The 2020 motile active matter roadmap. Journal of Physics Condensed Matter, 2020, 32, 193001.	0.7	242
47	Collective stiffening of soft hair assemblies. Physical Review E, 2020, 102, 010602.	0.8	5
48	Irreversible hydrodynamic trapping by surface rollers. Soft Matter, 2020, 16, 2611-2620.	1.2	10
49	Selectively controlled magnetic microrobots with opposing helices. Applied Physics Letters, 2020, 116,	1.5	26
50	Stokes flow due to point torques and sources in a spherical geometry. Physical Review Fluids, 2020, 5, .	1.0	6
51	Hydrodynamic model for Spiroplasma motility. Physical Review Fluids, 2020, 5, .	1.0	2
52	Traveling waves are hydrodynamically optimal for long-wavelength flagella. Physical Review Fluids, 2020, 5, .	1.0	3
53	Direct versus indirect hydrodynamic interactions during bundle formation of bacterial flagella. Physical Review Fluids, 2020, 5, .	1.0	6
54	Cilia density and flow velocity affect alignment of motile cilia from brain cells. Journal of Experimental Biology, 2020, 223, .	0.8	10

#	Article	IF	CITATIONS
55	10.1063/1.5143007.1., 2020, , .		Ο
56	Stochastic dynamics of dissolving active particles. European Physical Journal E, 2019, 42, 88.	0.7	9
57	Universal optimal geometry of minimal phoretic pumps. Scientific Reports, 2019, 9, 10788.	1.6	9
58	A Lightâ€Driven Microgel Rotor. Small, 2019, 15, e1903379.	5.2	32
59	Shape-programmed 3D printed swimming microtori for the transport of passive and active agents. Nature Communications, 2019, 10, 4932.	5.8	42
60	Transition to bound states for bacteria swimming near surfaces. Physical Review E, 2019, 100, 043117.	0.8	13
61	Viscoelastic propulsion of a rotating dumbbell. Microfluidics and Nanofluidics, 2019, 23, 1.	1.0	18
62	The near and far of a pair of magnetic capillary disks. Soft Matter, 2019, 15, 1497-1507.	1.2	8
63	A stochastic model for bacteria-driven micro-swimmers. Soft Matter, 2019, 15, 2605-2616.	1.2	6
64	Propulsion by stiff elastic filaments in viscous fluids. Physical Review E, 2019, 99, 053107.	0.8	3
65	The N -flagella problem: elastohydrodynamic motility transition of multi-flagellated bacteria. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180690.	1.0	15
66	Active Particles Powered by Quincke Rotation in a Bulk Fluid. Physical Review Letters, 2019, 122, 194503.	2.9	20
67	Self-organization of swimmers drives long-range fluid transport in bacterial colonies. Nature Communications, 2019, 10, 1792.	5.8	29
68	Adaptive locomotion of artificial microswimmers. Science Advances, 2019, 5, eaau1532.	4.7	203
69	Viscous growth and rebound of a bubble near a rigid surface. Journal of Fluid Mechanics, 2019, 860, 172-199.	1.4	6
70	Hydrodynamics of bacteriophage migration along bacterial flagella. Physical Review Fluids, 2019, 4, .	1.0	6
71	Method of regularized stokeslets: Flow analysis and improvement of convergence. Physical Review Fluids, 2019, 4, .	1.0	11
72	Swimming eukaryotic microorganisms exhibit a universal speed distribution. ELife, 2019, 8, .	2.8	28

#	Article	lF	CITATIONS
73	Helical micropumps near surfaces. Biomicrofluidics, 2018, 12, 014108.	1.2	10
74	Autophoretic motion in three dimensions. Soft Matter, 2018, 14, 3304-3314.	1.2	42
75	Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface. , 2018, , .		8
76	Artificial chemotaxis of phoretic swimmers: instantaneous and long-time behaviour. Journal of Fluid Mechanics, 2018, 856, 921-957.	1.4	19
77	The swimming of a deforming helix. European Physical Journal E, 2018, 41, 119.	0.7	11
78	The boundary integral formulation of Stokes flows includes slender-body theory. Journal of Fluid Mechanics, 2018, 850, .	1.4	46
79	Leading-order Stokes flows near a corner. IMA Journal of Applied Mathematics, 2018, 83, 590-633.	0.8	7
80	Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability. Scientific Reports, 2018, 8, 10728.	1.6	46
81	Physics of Bubbleâ€Propelled Microrockets. Advanced Functional Materials, 2018, 28, 1800686.	7.8	28
82	Computing the motor torque of <i>Escherichia coli</i> . Soft Matter, 2018, 14, 5955-5967.	1.2	18
83	Collective dissolution of microbubbles. Physical Review Fluids, 2018, 3, .	1.0	31
84	Geometric tuning of self-propulsion for Janus catalytic particles. Scientific Reports, 2017, 7, 42264.	1.6	49
85	Swimming with a cage: low-Reynolds-number locomotion inside a droplet. Soft Matter, 2017, 13, 3161-3173.	1.2	27
86	The non-Gaussian tops and tails of diffusing boomerangs. Soft Matter, 2017, 13, 2977-2982.	1.2	7
87	Arbitrary axisymmetric steady streaming: flow, force and propulsion. Journal of Engineering Mathematics, 2017, 105, 31-65.	0.6	30
88	Bubble-based acoustic micropropulsors: active surfaces and mixers. Lab on A Chip, 2017, 17, 1515-1528.	3.1	31
89	Helical propulsion in shear-thinning fluids. Journal of Fluid Mechanics, 2017, 812, .	1.4	48
90	Microscale flow dynamics of ribbons and sheets. Soft Matter, 2017, 13, 546-553.	1.2	10

#	Article	IF	CITATIONS
91	Empirical resistive-force theory for slender biological filaments in shear-thinning fluids. Physical Review E, 2017, 95, 062416.	0.8	24
92	Spontaneous oscillations of elastic filaments induced by molecular motors. Journal of the Royal Society Interface, 2017, 14, 20170491.	1.5	64
93	Active particles in periodic lattices. New Journal of Physics, 2017, 19, 115001.	1.2	51
94	Autophoretic flow on a torus. Physical Review Fluids, 2017, 2, .	1.0	13
95	Analytical solutions to slender-ribbon theory. Physical Review Fluids, 2017, 2, .	1.0	28
96	Two-fluid model for locomotion under self-confinement. Physical Review Fluids, 2017, 2, .	1.0	13
97	Bundling of elastic filaments induced by hydrodynamic interactions. Physical Review Fluids, 2017, 2, .	1.0	37
98	Sensing in the Mouth: A Model for Filiform Papillae as Strain Amplifiers. Frontiers in Physics, 2016, 4, .	1.0	27
99	Clustering instability of focused swimmers. Europhysics Letters, 2016, 116, 64004.	0.7	7
100	Phoretic flow induced by asymmetric confinement. Journal of Fluid Mechanics, 2016, 799, .	1.4	5
101	Can phoretic particles swim in two dimensions?. Physical Review E, 2016, 94, 062606.	0.8	15
102	Hydrodynamic interactions between nearby slender filaments. Europhysics Letters, 2016, 116, 24002.	0.7	23
103	Slender-ribbon theory. Physics of Fluids, 2016, 28, .	1.6	40
104	Small acoustically forced symmetric bodies in viscous fluids. Journal of the Acoustical Society of America, 2016, 139, 1081-1092.	0.5	6
105	A squirmer across Reynolds numbers. Journal of Fluid Mechanics, 2016, 796, 233-256.	1.4	75
106	Stresslets Induced by Active Swimmers. Physical Review Letters, 2016, 117, 148001.	2.9	33
107	Micro-Tug-of-War: A Selective Control Mechanism for Magnetic Swimmers. Physical Review Applied, 2016, 5, .	1.5	12
108	Rotation of slender swimmers in isotropic-drag media. Physical Review E, 2016, 93, 043125.	0.8	5

#	Article	IF	CITATIONS
109	Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softÂmicrorobots. Nature Materials, 2016, 15, 647-653.	13.3	757
110	Bacterial Hydrodynamics. Annual Review of Fluid Mechanics, 2016, 48, 105-130.	10.8	334
111	Flagellar flows around bacterial swarms. Physical Review Fluids, 2016, 1, .	1.0	31
112	Flow analysis of the low Reynolds number swimmer <i>C. elegans</i> . Physical Review Fluids, 2016, 1, .	1.0	18
113	Elastohydrodynamic synchronization of adjacent beating flagella. Physical Review Fluids, 2016, 1, .	1.0	36
114	Propulsion of Bubble-Based Acoustic Microswimmers. Physical Review Applied, 2015, 4, .	1.5	74
115	Phase-separation models for swimming enhancement in complex fluids. Physical Review E, 2015, 92, 023004.	0.8	50
116	Nondecaying Hydrodynamic Interactions along Narrow Channels. Physical Review Letters, 2015, 115, 038301.	2.9	47
117	A reciprocal theorem for boundary-driven channel flows. Physics of Fluids, 2015, 27, 111701.	1.6	13
118	Geometric capture and escape of a microswimmer colliding with an obstacle. Soft Matter, 2015, 11, 3396-3411.	1.2	143
119	A regularised singularity approach to phoretic problems. European Physical Journal E, 2015, 38, 139.	0.7	24
120	Autophoretic locomotion from geometric asymmetry. European Physical Journal E, 2015, 38, 91.	0.7	61
121	The bearable gooeyness of swimming. Journal of Fluid Mechanics, 2015, 762, 1-4.	1.4	17
122	Complex fluids affect low-Reynolds number locomotion in a kinematic-dependent manner. Experiments in Fluids, 2015, 56, 1.	1.1	38
123	The other optimal Stokes drag profile. Journal of Fluid Mechanics, 2015, 762, .	1.4	7
124	Small-amplitude swimmers can self-propel faster in viscoelastic fluids. Journal of Theoretical Biology, 2015, 382, 345-355.	0.8	51
125	Geometric pumping in autophoretic channels. Soft Matter, 2015, 11, 5804-5811.	1.2	26
126	Theory of Locomotion Through Complex Fluids. Biological and Medical Physics Series, 2015, , 283-317.	0.3	28

#	Article	IF	CITATIONS
127	Theoretical Models of Low-Reynolds-Number Locomotion. RSC Soft Matter, 2015, , 100-167.	0.2	13
128	Optimal propulsive flapping in Stokes flows. Bioinspiration and Biomimetics, 2014, 9, 016001.	1.5	27
129	Stochastic dynamics of active swimmers in linear flows. Journal of Fluid Mechanics, 2014, 742, 50-70.	1.4	48
130	Enhanced active swimming in viscoelastic fluids. Europhysics Letters, 2014, 108, 34003.	0.7	76
131	Dynamics of swimming bacteria at complex interfaces. Physics of Fluids, 2014, 26, .	1.6	133
132	The passive diffusion of <i>Leptospira interrogans</i> . Physical Biology, 2014, 11, 066008.	0.8	37
133	Geometry and wetting of capillary folding. Physical Review E, 2014, 89, 043011.	0.8	19
134	Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Physics of Fluids, 2014, 26, .	1.6	109
135	Viscous pumping inspired by flexible propulsion. Bioinspiration and Biomimetics, 2014, 9, 036007.	1.5	8
136	Sedimentation of a rotating sphere in a power-law fluid. Journal of Non-Newtonian Fluid Mechanics, 2014, 213, 27-30.	1.0	5
137	Rotational propulsion enabled by inertia. European Physical Journal E, 2014, 37, 16.	0.7	4
138	Generalized squirming motion of a sphere. Journal of Engineering Mathematics, 2014, 88, 1-28.	0.6	129
139	Optimal swimming of a sheet. Physical Review E, 2014, 89, 060701.	0.8	38
140	Locomotion in complex fluids: Integral theorems. Physics of Fluids, 2014, 26, .	1.6	70
141	Mixing by microorganisms in stratified fluids. Journal of Marine Research, 2014, 72, 47-72.	0.3	20
142	Phoretic self-propulsion at finite Péclet numbers. Journal of Fluid Mechanics, 2014, 747, 572-604.	1.4	161
143	The wobbling-to-swimming transition of rotated helices. Physics of Fluids, 2013, 25, .	1.6	45
144	Hydrodynamic Fluctuations in Confined Particle-Laden Fluids. Physical Review Letters, 2013, 111, 118301.	2.9	20

#	Article	IF	CITATIONS
145	Elastocapillary self-folding: buckling, wrinkling, and collapse of floating filaments. Soft Matter, 2013, 9, 1711-1720.	1.2	24
146	Shape of optimal active flagella. Journal of Fluid Mechanics, 2013, 730, .	1.4	46
147	Hydrodynamics of Confined Active Fluids. Physical Review Letters, 2013, 110, 038101.	2.9	111
148	Waving transport and propulsion in a generalized Newtonian fluid. Journal of Non-Newtonian Fluid Mechanics, 2013, 199, 37-50.	1.0	116
149	Crawling scallop: Friction-based locomotion with one degree of freedom. Journal of Theoretical Biology, 2013, 324, 42-51.	0.8	37
150	Spontaneous autophoretic motion of isotropic particles. Physics of Fluids, 2013, 25, .	1.6	179
151	Fluid elasticity increases the locomotion of flexible swimmers. Physics of Fluids, 2013, 25, .	1.6	83
152	Unsteady feeding and optimal strokes of model ciliates. Journal of Fluid Mechanics, 2013, 715, 1-31.	1.4	34
153	Hydrodynamics of the double-wave structure of insect spermatozoa flagella. Journal of the Royal Society Interface, 2012, 9, 1908-1924.	1.5	12
154	Self-propulsion in viscoelastic fluids: Pushers vs. pullers. Physics of Fluids, 2012, 24, .	1.6	152
155	Micropropulsion and microrheology in complex fluids via symmetry breaking. Physics of Fluids, 2012, 24, .	1.6	79
156	Kinematics of the Most Efficient Cilium. Physical Review Letters, 2012, 109, 038101.	2.9	87
157	Buckling instability of squeezed droplets. Physics of Fluids, 2012, 24, 072102.	1.6	5
158	Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. Journal of Fluid Mechanics, 2012, 700, 105-147.	1.4	378
159	Hydrodynamics of the Double-Wave Structure of Insect Spermatozoa. Biophysical Journal, 2012, 102, 414a-415a.	0.2	0
160	Dance of the microswimmers. Physics Today, 2012, 65, 30-35.	0.3	66
161	Active and driven hydrodynamic crystals. European Physical Journal E, 2012, 35, 68.	0.7	20
162	Synchronization of Swimming Microorganisms. Biophysical Journal, 2012, 102, 415a.	0.2	0

#	Article	IF	CITATIONS
163	Cargoâ€Towing Fuelâ€Free Magnetic Nanoswimmers for Targeted Drug Delivery. Small, 2012, 8, 460-467.	5.2	393
164	Viscous Marangoni propulsion. Journal of Fluid Mechanics, 2012, 705, 120-133.	1.4	87
165	Stability and non-linear response of 1D microfluidic-particle streams. Soft Matter, 2011, 7, 11082.	1.2	13
166	Extensibility enables locomotion under isotropic drag. Physics of Fluids, 2011, 23, 081702.	1.6	5
167	High-speed propulsion of flexible nanowire motors: Theory and experiments. Soft Matter, 2011, 7, 8169.	1.2	195
168	Energetics of synchronized states in three-dimensional beating flagella. Physical Review E, 2011, 84, 061905.	0.8	38
169	A smooth future?. Nature Materials, 2011, 10, 334-337.	13.3	238
170	A two-dimensional model of low-Reynolds number swimming beneath a free surface. Journal of Fluid Mechanics, 2011, 681, 24-47.	1.4	40
171	Taylor's swimming sheet: Analysis and improvement of the perturbation series. Physica D: Nonlinear Phenomena, 2011, 240, 1567-1573.	1.3	51
172	Synchronization of flexible sheets. Journal of Fluid Mechanics, 2011, 674, 163-173.	1.4	54
173	Life around the scallop theorem. Soft Matter, 2011, 7, 3060-3065.	1.2	186
174	Locomotion by tangential deformation in a polymeric fluid. Physical Review E, 2011, 83, 011901.	0.8	77
175	Fluid transport by active elastic membranes. Physical Review E, 2011, 84, 031924.	0.8	2
176	Enhanced Diffusion by Reciprocal Swimming. Physical Review Letters, 2011, 106, 178101.	2.9	48
177	Comparative Hydrodynamics of Bacterial Polymorphism. Physical Review Letters, 2011, 106, 058103.	2.9	77
178	Publisher's Note: Enhanced Diffusion by Reciprocal Swimming [Phys. Rev. Lett. 106 , 178101 (2011)]. Physical Review Letters, 2011, 106, .	2.9	3
179	Emergency cell swimming. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7655-7656.	3.3	5
180	Orientational order in concentrated suspensions of spherical microswimmers. Physics of Fluids, 2011, 23, .	1.6	103

#	Article	IF	CITATIONS
181	Optimal feeding is optimal swimming for all PÃ $f O$ clet numbers. Physics of Fluids, 2011, 23, .	1.6	75
182	Passive hydrodynamic synchronization of two-dimensional swimming cells. Physics of Fluids, 2011, 23, 011902.	1.6	47
183	Mechanical Aspects of Biological Locomotion. Experimental Mechanics, 2010, 50, 1259-1261.	1.1	4
184	The Long-Time Dynamics of Two Hydrodynamically-Coupled Swimming Cells. Bulletin of Mathematical Biology, 2010, 72, 973-1005.	0.9	37
185	The transient swimming of a waving sheet. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 107-126.	1.0	38
186	Pumping by flapping in a viscoelastic fluid. Physical Review E, 2010, 81, 036312.	0.8	48
187	Shaking-induced motility in suspensions of soft active particles. Physical Review E, 2010, 81, 026312.	0.8	6
188	Two-dimensional flagellar synchronization in viscoelastic fluids. Journal of Fluid Mechanics, 2010, 646, 505-515.	1.4	42
189	Efficiency optimization and symmetry-breaking in a model of ciliary locomotion. Physics of Fluids, 2010, 22, .	1.6	115
190	Jet propulsion without inertia. Physics of Fluids, 2010, 22, .	1.6	28
191	Propulsion by passive filaments and active flagella near boundaries. Physical Review E, 2010, 82, 041915.	0.8	40
192	The optimal elastic flagellum. Physics of Fluids, 2010, 22, .	1.6	78
193	Stokesian jellyfish: viscous locomotion of bilayer vesicles. Soft Matter, 2010, 6, 1737.	1.2	13
194	Hydrodynamic friction of fakir-like superhydrophobic surfaces. Journal of Fluid Mechanics, 2010, 661, 402-411.	1.4	110
195	Hydrodynamic Phase Locking of Swimming Microorganisms. Physical Review Letters, 2009, 103, 088101.	2.9	109
196	Adhesion transition of flexible sheets. Physical Review E, 2009, 79, 066116.	0.8	10
197	Reciprocal locomotion of dense swimmers in Stokes flow. Journal of Physics Condensed Matter, 2009, 21, 204103.	0.7	16
198	Capillary instability on a hydrophilic stripe. New Journal of Physics, 2009, 11, 075024.	1.2	21

#	Article	IF	CITATIONS
199	Geometric transition in friction for flow over a bubble mattress. Physics of Fluids, 2009, 21, .	1.6	139
200	The friction of a mesh-like super-hydrophobic surface. Physics of Fluids, 2009, 21, .	1.6	40
201	The hydrodynamics of swimming microorganisms. Reports on Progress in Physics, 2009, 72, 096601.	8.1	1,891
202	Influence of slip on the dynamics of two-dimensional wakes. Journal of Fluid Mechanics, 2009, 633, 437-447.	1.4	73
203	Hydrodynamic Attraction of Swimming Microorganisms by Surfaces. Physical Review Letters, 2008, 101, 038102.	2.9	641
204	Crawling beneath the free surface: Water snail locomotion. Physics of Fluids, 2008, 20, .	1.6	35
205	No many-scallop theorem: Collective locomotion of reciprocal swimmers. Physical Review E, 2008, 78, 030901.	0.8	84
206	Flapping motion and force generation in a viscoelastic fluid. Physical Review E, 2008, 78, 061907.	0.8	68
207	Soft Swimming: Exploiting Deformable Interfaces for Low Reynolds Number Locomotion. Physical Review Letters, 2008, 101, 048102.	2.9	90
208	Propulsion in a viscoelastic fluid. Physics of Fluids, 2007, 19, .	1.6	271
209	Continuous breakdown of Purcell's scallop theorem with inertia. Physics of Fluids, 2007, 19, 061703.	1.6	44
210	Floppy swimming: Viscous locomotion of actuated elastica. Physical Review E, 2007, 75, 041916.	0.8	98
211	Microfluidics: The No-Slip Boundary Condition. , 2007, , 1219-1240.		267
212	Swimming in Circles: Motion of Bacteria near Solid Boundaries. Biophysical Journal, 2006, 90, 400-412.	0.2	805
213	Self-Assembly of Spherical Particles on an Evaporating Sessile Droplet. Langmuir, 2006, 22, 4547-4551.	1.6	30
214	Experimental investigations of elastic tail propulsion at low Reynolds number. Physics of Fluids, 2006, 18, 091701.	1.6	148
215	Tuning gastropod locomotion: Modeling the influence of mucus rheology on the cost of crawling. Physics of Fluids, 2006, 18, 113102.	1.6	37
216	A note on the stability of slip channel flows. Physics of Fluids, 2005, 17, 088106.	1.6	78

#	Article	IF	CITATIONS
217	Brownian motion near a partial-slip boundary: A local probe of the no-slip condition. Physics of Fluids, 2005, 17, 103102.	1.6	84
218	Evaporation-Driven Assembly of Colloidal Particles. Physical Review Letters, 2004, 93, 238301.	2.9	97
219	Dynamic mechanisms for apparent slip on hydrophobic surfaces. Physical Review E, 2004, 70, 026311.	0.8	112
220	Apparent Slip Due to the Motion of Suspended Particles in Flows of Electrolyte Solutions. Langmuir, 2004, 20, 8924-8930.	1.6	25
221	Three-dimensional flows in slowly varying planar geometries. Physics of Fluids, 2004, 16, 3051-3062.	1.6	50
222	Performance of a linear robust control strategy on a nonlinear model of spatially developing flows. Journal of Fluid Mechanics, 2004, 512, .	1.4	38
223	The decay of stabilizability with Reynolds number in a linear model of spatially developing flows. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 2077-2095.	1.0	33
224	Effective slip in pressure-driven Stokes flow. Journal of Fluid Mechanics, 2003, 489, 55-77.	1.4	640
225	Modern control of linear global instability in a cylinder wake model. International Journal of Heat and Fluid Flow, 2002, 23, 671-677.	1.1	7
226	Vortices in rotating systems: Centrifugal, elliptic and hyperbolic type instabilities. Physics of Fluids, 1999, 11, 3716-3728.	1.6	52