Sandra Duharcourt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6660908/publications.pdf

Version: 2024-02-01

43 papers 2,801 citations

257450 24 h-index 315739 38 g-index

48 all docs

48 docs citations

48 times ranked

1894 citing authors

#	Article	IF	CITATIONS
1	GC content, but not nucleosome positioning, directly contributes to intron splicing efficiency in <i>Paramecium</i> . Genome Research, 2022, 32, 699-709.	5.5	6
2	Paramecium Polycomb repressive complex 2 physically interacts with the small RNA-binding PIWI protein to repress transposable elements. Developmental Cell, 2022, 57, 1037-1052.e8.	7.0	27
3	DNAModAnnot: a R toolbox for DNA modification filtering and annotation. Bioinformatics, 2021, 37, 2738-2740.	4.1	7
4	Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes. PLoS Biology, 2021, 19, e3001309.	5.6	30
5	Role of Polycomb in the control of transposable elements. Trends in Genetics, 2021, 37, 882-889.	6.7	45
6	The Paramecium histone chaperone Spt16-1 is required for Pgm endonuclease function in programmed genome rearrangements. PLoS Genetics, 2020, 16, e1008949.	3.5	14
7	A universal method for the rapid isolation of all known classes of functional silencing small RNAs. Nucleic Acids Research, 2020, 48, e79-e79.	14.5	22
8	Title is missing!. , 2020, 16, e1008949.		0
9	Title is missing!. , 2020, 16, e1008949.		O
10	Title is missing!. , 2020, 16, e1008949.		0
11	Title is missing!. , 2020, 16, e1008949.		O
12	The Polycomb protein Ezl1 mediates H3K9 and H3K27 methylation to repress transposable elements in Paramecium. Nature Communications, 2019, 10, 2710.	12.8	69
13	The Challenges of Genome-Wide Studies in a Unicellular Eukaryote With Two Nuclear Genomes. Methods in Enzymology, 2018, 612, 101-126.	1.0	3
14	Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression. BMC Genomics, 2017, 18, 483.	2.8	54
15	Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements. BMC Genomics, 2017, 18, 327.	2.8	53
16	DNA deletion as a mechanism for developmentally programmed centromere loss. Nucleic Acids Research, 2016, 44, 1553-1565.	14.5	15
17	TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements. PLoS Genetics, 2015, 11, e1005383.	3.5	32
18	Local Effect of Enhancer of Zeste-Like Reveals Cooperation of Epigenetic and cis-Acting Determinants for Zygotic Genome Rearrangements. PLoS Genetics, 2014, 10, e1004665.	3.5	66

#	Article	IF	Citations
19	Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature, 2014, 509, 447-452.	27.8	105
20	Programmed Rearrangement in Ciliates: <i>Paramecium</i> . Microbiology Spectrum, 2014, 2, .	3.0	62
21	The Paramecium Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences. PLoS Genetics, 2012, 8, e1002984.	3.5	154
22	RNAâ€guided DNA rearrangements in ciliates: Is the best genome defence a good offence?. Biology of the Cell, 2012, 104, 309-325.	2.0	57
23	Maintaining Clonal <i>Paramecium tetraurelia</i> Cell Lines of Controlled Age through Daily Reisolation. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5361.	0.3	30
24	Immunocytochemistry of <i>Paramecium</i> Cytoskeletal Structures. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5365.	0.3	13
25	<i>Paramecium tetraurelia:</i> The Renaissance of an Early Unicellular Model. Cold Spring Harbor Protocols, 2010, 2010, pdb.emo140.	0.3	43
26	Mass Culture of <i>Paramecium tetraurelia</i> : Figure 1 Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5362.	0.3	39
27	Silencing Specific <i>Paramecium tetraurelia</i> Genes by Feeding Double-Stranded RNA. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5363.	0.3	27
28	DNA Microinjection into the Macronucleus of <i>Paramecium</i> . Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5364.	0.3	21
29	Silencing-associated and meiosis-specific small RNA pathways in Paramecium tetraurelia. Nucleic Acids Research, 2009, 37, 903-915.	14.5	120
30	Developmental genome rearrangements in ciliates: a natural genomic subtraction mediated by non-coding transcripts. Trends in Genetics, 2009, 25, 344-350.	6.7	77
31	Developmentally programmed DNA splicing in Paramecium reveals short-distance crosstalk between DNA cleavage sites. Nucleic Acids Research, 2008, 36, 3244-3251.	14.5	31
32	Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in <i>Paramecium tetraurelia</i>). Genes and Development, 2008, 22, 1501-1512.	5.9	115
33	Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature, 2006, 444, 171-178.	27.8	744
34	RNA-Mediated Programming of Developmental Genome Rearrangements in Paramecium tetraurelia. Molecular and Cellular Biology, 2004, 24, 7370-7379.	2.3	131
35	Role of Histone Deacetylation in Developmentally Programmed DNA Rearrangements in Tetrahymena thermophila. Eukaryotic Cell, 2002, 1, 293-303.	3.4	35
36	Timing of Developmentally Programmed Excision and Circularization of Paramecium Internal Eliminated Sequences. Molecular and Cellular Biology, 2000, 20, 1553-1561.	2.3	59

#	ARTICLE	IF	CITATIONS
37	Homology-Dependent Maternal Inhibition of Developmental Excision of Internal Eliminated Sequences in <i>Paramecium tetraurelia</i> Molecular and Cellular Biology, 1998, 18, 7075-7085.	2.3	116
38	Sequence-Specific Epigenetic Effects of the Maternal Somatic Genome on Developmental Rearrangements of the Zygotic Genome in <i>Paramecium primaurelia</i> . Molecular and Cellular Biology, 1997, 17, 3589-3599.	2.3	41
39	Epigenetic Programming of Developmental Genome Rearrangements in Ciliates. Cell, 1996, 87, 9-12.	28.9	58
40	Epigenetic Regulation of Programmed Genomic Rearrangements in Paramecium aurelia. Journal of Eukaryotic Microbiology, 1996, 43, 453-461.	1.7	27
41	Epigenetic self-regulation of developmental excision of an internal eliminated sequence on Paramecium tetraurelia Genes and Development, 1995, 9, 2065-2077.	5.9	145
42	Promoter-specific regulation of gene expression by an exogenously added homeodomain that promotes neurite growth. FEBS Letters, 1995, 368, 311-314.	2.8	25
43	Programmed Rearrangement in Ciliates: <i>Paramecium</i> , 0, , 369-388.		2