
Douglas H Sweet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6659955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gilteritinib Inhibits Glutamine Uptake and Utilization in <i>FLT3</i> -ITD–Positive AML. Molecular Cancer Therapeutics, 2021, 20, 2207-2217.	4.1	27
2	Organic Cation Transporter Expression and Function in the CNS. Handbook of Experimental Pharmacology, 2021, 266, 41-80.	1.8	14
3	Effects of antibiotics on the pharmacokinetics of indoxyl sulfate, a nephro-cardiovascular toxin. Xenobiotica, 2020, 50, 588-592.	1.1	6
4	Multi-modal antidepressant-like action of 6- and 7-chloro-2-aminodihydroquinazolines in the mouse tail suspension test. Psychopharmacology, 2019, 236, 2093-2104.	3.1	11
5	Organic solute carrier 22 (SLC22) family: Potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs. Journal of Food and Drug Analysis, 2018, 26, S45-S60.	1.9	20
6	Building a schizophrenia genetic network: transcription factor 4 regulates genes involved in neuronal development and schizophrenia risk. Human Molecular Genetics, 2018, 27, 3246-3256.	2.9	33
7	Effects of nonsteroidal anti-inflammatory drugs on the renal excretion of indoxyl sulfate, a nephro-cardiovascular toxin, in rats. European Journal of Pharmaceutical Sciences, 2017, 101, 66-70.	4.0	20
8	Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain. Neuropharmacology, 2017, 117, 182-194.	4.1	65
9	Determination of l -glutamic acid and γ–aminobutyric acid in mouse brain tissue utilizing GC–MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1068-1069, 64-70.	2.3	9
10	A new chemotype inhibitor for the human organic cation transporter 3 (hOCT3). Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4440-4445.	2.2	6
11	Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure. Scientific Reports, 2015, 5, 16226.	3.3	14
12	A Simple High-Performance Liquid Chromatographic Method for the Simultaneous Determination of Monoamine Neurotransmitters and Relative Metabolites with Application in Mouse Brain Tissue. Journal of Liquid Chromatography and Related Technologies, 2015, 38, 1173-1178.	1.0	14
13	Inhibition of human organic cation transporters by the alkaloids matrine and oxymatrine. Fìtoterapìâ, 2014, 92, 206-210.	2.2	7
14	Cumulative Organic Anion Transporter-Mediated Drug-Drug Interaction Potential of Multiple Components in Salvia Miltiorrhiza (Danshen) Preparations. Pharmaceutical Research, 2014, 31, 3503-3514.	3.5	12
15	The Furan Fatty Acid Metabolite CMPF Is Elevated in Diabetes and Induces Î ² Cell Dysfunction. Cell Metabolism, 2014, 19, 653-666.	16.2	142
16	The Kidney and Uremic Toxin Removal: Glomerulus or Tubule?. Seminars in Nephrology, 2014, 34, 191-208.	1.6	129
17	Expression and Function of Organic Cation and Anion Transporters (SLC22 Family) in the CNS. Current Pharmaceutical Design, 2014, 20, 1472-1486.	1.9	26
18	The anthraquinone drug rhein potently interferes with organic anion transporter-mediated renal elimination. Biochemical Pharmacology, 2013, 86, 991-996.	4.4	30

DOUGLAS H SWEET

#	Article	IF	CITATIONS
19	Simultaneous determination of gallic acid and gentisic acid in organic anion transporter expressing cells by liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 937, 91-96.	2.3	26
20	Human Organic Cation Transporters 1 (<i>SLC22A1</i>), 2 (<i>SLC22A2</i>), and 3 (<i>SLC22A3</i>) as Disposition Pathways for Fluoroquinolone Antimicrobials. Antimicrobial Agents and Chemotherapy, 2013, 57, 2705-2711.	3.2	27
21	Renal Organic Anion Transporters (SLC22 Family): Expression, Regulation, Roles in Toxicity, and Impact on Injury and Disease. AAPS Journal, 2013, 15, 53-69.	4.4	117
22	Interaction of Natural Dietary and Herbal Anionic Compounds and Flavonoids with Human Organic Anion Transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-7.	1.2	12
23	Sex-dependent expression of Oat3 (Slc22a8) and Oat1 (Slc22a6) proteins in murine kidneys. American Journal of Physiology - Renal Physiology, 2013, 304, F1114-F1126.	2.7	31
24	Interaction of Ethambutol with Human Organic Cation Transporters of the SLC22 Family Indicates Potential for Drug-Drug Interactions during Antituberculosis Therapy. Antimicrobial Agents and Chemotherapy, 2013, 57, 5053-5059.	3.2	27
25	Competitive Inhibition of Human Organic Anion Transporters 1 (SLC22A6), 3 (SLC22A8) and 4 (SLC22A11) by Major Components of the Medicinal Herb Salvia miltiorrhiza (Danshen). Drug Metabolism and Pharmacokinetics, 2013, 28, 220-228.	2.2	26
26	Active Hydrophilic Components of the Medicinal HerbSalvia miltiorrhiza(Danshen) Potently Inhibit Organic Anion Transporters 1 (Slc22a6) and 3 (Slc22a8). Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-8.	1.2	9
27	Fluoroquinolone disposition: identification of the contribution of renal secretory and reabsorptive drug transporters. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 553-569.	3.3	27
28	Potential for food–drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Biochemical Pharmacology, 2012, 84, 1088-1095.	4.4	53
29	Role of drug transporters in the systemic disposition of fluoroquinolones. FASEB Journal, 2012, 26, 1099.7.	0.5	0
30	Linkage of Organic Anion Transporter-1 to Metabolic Pathways through Integrated "Omics―driven Network and Functional Analysis. Journal of Biological Chemistry, 2011, 286, 31522-31531.	3.4	57
31	Physiological and Molecular Characterization of Aristolochic Acid Transport by the Kidney. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 588-597.	2.5	68
32	Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharmaceutics and Drug Disposition, 2010, 31, 1-71.	1.9	205
33	Site-specific accumulation of the cancer preventive dietary polyphenol ellagic acid in epithelial cells of the aerodigestive tract. Journal of Pharmacy and Pharmacology, 2010, 58, 1201-1209.	2.4	18
34	Organic Anion Transporter 6 (<i>Slc22a20</i>) Specificity and Sertoli Cell-Specific Expression Provide New Insight on Potential Endogenous Roles. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 927-935.	2.5	20
35	Activation of Protein Kinase Cζ Increases OAT1 (SLC22A6)- and OAT3 (SLC22A8)-mediated Transport. Journal of Biological Chemistry, 2009, 284, 2672-2679.	3.4	41
36	Impaired Clearance of Methotrexate in Organic Anion Transporter 3 (Slc22a8) Knockout Mice: A Gender Specific Impact of Reduced Folates. Pharmaceutical Research, 2008, 25, 453-462.	3.5	69

DOUGLAS H SWEET

#	Article	IF	CITATIONS
37	Two CES1 Gene Mutations Lead to Dysfunctional Carboxylesterase 1 Activity in Man: Clinical Significance and Molecular Basis. American Journal of Human Genetics, 2008, 82, 1241-1248.	6.2	202
38	Organic Anion Transporter 3 (Oat3/ <i>Slc22a8</i>) Interacts with Carboxyfluoroquinolones, and Deletion Increases Systemic Exposure to Ciprofloxacin. Molecular Pharmacology, 2008, 74, 122-131.	2.3	98
39	Activation of cAMPâ€dependent protein kinase (PKA) downâ€regulates organic anion transporter 6 function. FASEB Journal, 2008, 22, 1202.4.	0.5	0
40	Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. American Journal of Physiology - Renal Physiology, 2007, 293, F1332-F1341.	2.7	86
41	Organic anion and cation transporter expression and function during embryonic kidney development and in organ culture models. Kidney International, 2006, 69, 837-845.	5.2	58
42	Transport of estrone sulfate by the novel organic anion transporter Oat6 (Slc22a20). American Journal of Physiology - Renal Physiology, 2006, 291, F314-F321.	2.7	43
43	Organic anion transporter (Slc22a) family members as mediators of toxicity. Toxicology and Applied Pharmacology, 2005, 204, 198-215.	2.8	136
44	THE DIETARY POLYPHENOL ELLAGIC ACID IS A POTENT INHIBITOR OF hOAT1. Drug Metabolism and Disposition, 2005, 33, 1097-1100.	3.3	53
45	Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. American Journal of Physiology - Renal Physiology, 2004, 287, F236-F244.	2.7	108
46	Organic anion transport in choroid plexus from wild-type and organic anion transporter 3 (Slc22a8)-null mice. American Journal of Physiology - Renal Physiology, 2004, 286, F972-F978.	2.7	59
47	Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+gradient. American Journal of Physiology - Renal Physiology, 2003, 284, F763-F769.	2.7	180
48	Stoichiometry of organic anion/dicarboxylate exchange in membrane vesicles from rat renal cortex and hOAT1-expressing cells. American Journal of Physiology - Renal Physiology, 2003, 285, F775-F783.	2.7	35
49	Impaired Organic Anion Transport in Kidney and Choroid Plexus of Organic Anion Transporter 3 (Oat3) Tj ETQq1	1 0.78431 3.4	4 rgBT /Over 261
50	Mercapturic Acids (N-AcetylcysteineS-Conjugates) as Endogenous Substrates for the Renal Organic Anion Transporter-1. Molecular Pharmacology, 2001, 60, 1091-1099.	2.3	50
51	The organic anion transporter family: from physiology to ontogeny and the clinic. American Journal of Physiology - Renal Physiology, 2001, 281, F197-F205.	2.7	122
52	Ventricular Choline Transport. Journal of Biological Chemistry, 2001, 276, 41611-41619.	3.4	141
53	Basolateral localization of organic cation transporter 2 in intact renal proximal tubules. American Journal of Physiology - Renal Physiology, 2000, 279, F826-F834.	2.7	37
54	rOCT2 is a basolateral potential-driven carrier, not an organic cation/proton exchanger. American Journal of Physiology - Renal Physiology, 1999, 277, F890-F898.	2.7	35

DOUGLAS H SWEET

#	Article	IF	CITATIONS
55	Localization of an organic anion transporter-GFP fusion construct (rROAT1-GFP) in intact proximal tubules. American Journal of Physiology - Renal Physiology, 1999, 276, F864-F873.	2.7	23
56	The Antiviral Nucleotide Analogs Cidofovir and Adefovir Are Novel Substrates for Human and Rat Renal Organic Anion Transporter 1. Molecular Pharmacology, 1999, 56, 570-580.	2.3	320
57	A transfected cell model for the renal toxin transporter, rOCT2. Toxicological Sciences, 1999, 47, 181-186.	3.1	36
58	Mechanism of Organic Anion Transport across the Apical Membrane of Choroid Plexus. Journal of Biological Chemistry, 1999, 274, 33382-33387.	3.4	70
59	The molecular biology of renal organic anion and organic cation transporters. Cell Biochemistry and Biophysics, 1999, 31, 89-118.	1.8	73
60	Expression Cloning and Characterization of ROAT1. Journal of Biological Chemistry, 1997, 272, 30088-30095.	3.4	379