Longzhu Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6658755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interspecies Regulation Between Staphylococcus caprae and Staphylococcus aureus Colonized on Healed Skin After Injury. Frontiers in Microbiology, 2022, 13, 818398.	3.5	3
2	The Association Between Onset of Staphylococcal Non-menstrual Toxic Shock Syndrome With Inducibility of Toxic Shock Syndrome Toxin-1 Production. Frontiers in Microbiology, 2022, 13, 765317.	3.5	0
3	Bacteriophages as Solid Tumor Theragnostic Agents. International Journal of Molecular Sciences, 2022, 23, 402.	4.1	17
4	Distribution of Extended-Spectrum β-Lactamase Genes and Antimicrobial Susceptibility among Residents in Geriatric Long-Term Care Facilities in Japan. Antibiotics, 2022, 11, 36.	3.7	1
5	Automated amplification-free digital RNA detection platform for rapid and sensitive SARS-CoV-2 diagnosis. Communications Biology, 2022, 5, .	4.4	28
6	Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Annals of Clinical Microbiology and Antimicrobials, 2021, 20, 49.	3.8	9
7	Complete Genome Sequencing of Mycobacterium heckeshornense Strain JMUB5695, Isolated from Necrotizing Granulomatous Lesions. Microbiology Resource Announcements, 2021, 10, e0014121.	0.6	0
8	Bacteriophage Technology and Modern Medicine. Antibiotics, 2021, 10, 999.	3.7	17
9	Inhibitory effects of ultrasound irradiation on Staphylococcus epidermidis biofilm. Journal of Medical Ultrasonics (2001), 2021, 48, 439-448.	1.3	3
10	Comparative Analysis of Bacterial Communities in Lutzomyia ayacuchensis Populations with Different Vector Competence to Leishmania Parasites in Ecuador and Peru. Microorganisms, 2021, 9, 68.	3.6	5
11	Prolonged carriage of ESBL-producing enterobacterales and potential cross-transmission among residents in geriatric long-term care facilities. Scientific Reports, 2021, 11, 21607.	3.3	2
12	Influenza Outbreak and a Group Meal in a Geriatric Long-term Care Facility in Japan. Biocontrol Science, 2021, 26, 207-210.	0.8	0
13	Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA). Scientific Reports, 2020, 10, 16107.	3.3	40
14	Association between length of residence and prevalence of MRSA colonization among residents in geriatric long-term care facilities. BMC Geriatrics, 2020, 20, 481.	2.7	7
15	Identification and characterization of mutations responsible for the β-lactam resistance in oxacillin-susceptible mecA-positive Staphylococcus aureus. Scientific Reports, 2020, 10, 16907.	3.3	24
16	Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nature Communications, 2020, 11, 2934.	12.8	110
17	Complete Genome Sequence of a Panton-Valentine Leukocidin-Negative Staphylococcus aureus Strain Isolated from a Patient with Pervasive Necrotizing Soft Tissue Infection. Microbiology Resource Announcements, 2020, 9, .	0.6	0
18	Post-surgical meningitis caused by Klebsiella variicola. IDCases, 2019, 18, e00622.	0.9	6

LONGZHU СИІ

#	Article	IF	CITATIONS
19	Analysis host-recognition mechanism of staphylococcal kayvirus É,SA039 reveals a novel strategy that protects Staphylococcus aureus against infection by Staphylococcus pseudintermedius Siphoviridae phages. Applied Microbiology and Biotechnology, 2019, 103, 6809-6823.	3.6	16
20	Probiotics Prevents Sensitization to Oral Antigen and Subsequent Increases in Intestinal Tight Junction Permeability in Juvenile–Young Adult Rats. Microorganisms, 2019, 7, 463.	3.6	26
21	Complete Genome Sequence of the Methicillin-Resistant Staphylococcus aureus Strain JMUB3031, Isolated from a Patient with Fatal Community-Acquired Pneumonia. Microbiology Resource Announcements, 2019, 8, .	0.6	2
22	Oxidative stress resistance and fitness-compensatory response in vancomycin-intermediate <i>Staphylococcus aureus</i> (VISA). Canadian Journal of Microbiology, 2019, 65, 623-628.	1.7	1
23	Composition and Diversity of CRISPR-Cas13a Systems in the Genus Leptotrichia. Frontiers in Microbiology, 2019, 10, 2838.	3.5	25
24	Characterization of compensatory mutations associated with restoration of daptomycin-susceptibility in daptomycin non-susceptible methicillin-resistant Staphylococcus aureus and the role mprF mutations. Journal of Infection and Chemotherapy, 2019, 25, 1-5.	1.7	8
25	Optimized universal protocol for electroporation of both coagulase-positive and -negative Staphylococci. Journal of Microbiological Methods, 2018, 146, 25-32.	1.6	8
26	Complete genome sequencing of three human clinical isolates of Staphylococcus caprae reveals virulence factors similar to those of S. epidermidis and S. capitis. BMC Genomics, 2018, 19, 810.	2.8	36
27	Induction of Mucosal Humoral Immunity by Subcutaneous Injection of an Oil-emulsion Vaccine against <i>Salmonella enterica</i> subsp. <i>enterica</i> serovar Enteritidis in Chickens. Food Safety (Tokyo,) Tj ETQ	q110 8 843	14 ngBT /Ove
28	Activated ADI pathway: the initiator of intermediate vancomycin resistance in <i>Staphylococcus aureus</i> . Canadian Journal of Microbiology, 2017, 63, 260-264.	1.7	17
29	Complete Genome Sequence of Streptococcus pyogenes Strain JMUB1235 Isolated from an Acute Phlegmonous Gastritis Patient. Genome Announcements, 2016, 4, .	0.8	13
30	Fatal Fulminant Pneumonia Caused by Methicillin-Sensitive Staphylococcus aureus Negative for Major High-Virulence Factors Following Influenza B Virus Infection. American Journal of Case Reports, 2015, 16, 454-458.	0.8	3
31	"Slow VISA,―a Novel Phenotype of Vancomycin Resistance, FoundIn Vitroin Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Strain Mu3. Antimicrobial Agents and Chemotherapy, 2014, 58, 5024-5035.	3.2	32
32	Antibiotic susceptibility survey of blood-borne MRSA isolates in Japan from 2008 through 2011. Journal of Infection and Chemotherapy, 2014, 20, 527-534.	1.7	30
33	Comprehensive Identification of Mutations Responsible for Heterogeneous Vancomycin-Intermediate Staphylococcus aureus (hVISA)-to-VISA Conversion in Laboratory-Generated VISA Strains Derived from hVISA Clinical Strain Mu3. Antimicrobial Agents and Chemotherapy, 2013, 57, 5843-5853.	3.2	54
34	Mutation of RNA Polymerase β-Subunit Gene Promotes Heterogeneous-to-Homogeneous Conversion of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2013, 57, 4861-4871.	3.2	40
35	Immunochromatographic Detection of the Group B Streptococcus Antigen from Enrichment Cultures. Vaccine Journal, 2013, 20, 1381-1387.	3.1	10
36	Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1647-56.	7.1	69

LONGZHU СИІ

#	Article	IF	CITATIONS
37	<i>walK</i> and <i>clpP</i> Mutations Confer Reduced Vancomycin Susceptibility in <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 3870-3881.	3.2	138
38	Mutation of RNA Polymerase β Subunit (<i>rpoB</i>) Promotes hVISA-to-VISA Phenotypic Conversion of Strain Mu3. Antimicrobial Agents and Chemotherapy, 2011, 55, 4188-4195.	3.2	91
39	Impact of rpoB Mutations on Reduced Vancomycin Susceptibility in Staphylococcus aureus. Journal of Clinical Microbiology, 2011, 49, 2680-2684.	3.9	110
40	An RpoB Mutation Confers Dual Heteroresistance to Daptomycin and Vancomycin in <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 5222-5233.	3.2	188
41	Selection of Heterogeneous Vancomycin-Intermediate <i>Staphylococcus aureus</i> by Imipenem. Antimicrobial Agents and Chemotherapy, 2009, 53, 3190-3196.	3.2	56
42	Contribution of <i>vraSR</i> and <i>graSR</i> Point Mutations to Vancomycin Resistance in Vancomycin-Intermediate <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 1231-1234.	3.2	122
43	Development and validation of microarray-based assay for epidemiological study of MRSA. Molecular and Cellular Probes, 2008, 22, 1-13.	2.1	9
44	Mutated Response Regulator graR Is Responsible for Phenotypic Conversion of Staphylococcus aureus from Heterogeneous Vancomycin-Intermediate Resistance to Vancomycin-Intermediate Resistance. Antimicrobial Agents and Chemotherapy, 2008, 52, 45-53.	3.2	147
45	Extreme Genetic Diversity of Methicillin-Resistant <i>Staphylococcus epidermidis</i> Strains Disseminated among Healthy Japanese Children. Journal of Clinical Microbiology, 2008, 46, 3778-3783.	3.9	85
46	Improved Antimicrobial Activity of Linezolid against Vancomycin-Intermediate <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 4207-4208.	3.2	13
47	Serial Daptomycin Selection Generates Daptomycin-Nonsusceptible <i>Staphylococcus aureus</i> Strains with a Heterogeneous Vancomycin-Intermediate Phenotype. Antimicrobial Agents and Chemotherapy, 2008, 52, 4289-4299.	3.2	109
48	Persistent bacteraemia due to methicillin-resistant Staphylococcus aureus with reduced susceptibility to vancomycin in a patient with erythrodermic psoriasis. Scandinavian Journal of Infectious Diseases, 2007, 39, 457-460.	1.5	11
49	Impact of reduced vancomycin susceptibility on the therapeutic outcome of MRSA bloodstream infections. Annals of Clinical Microbiology and Antimicrobials, 2007, 6, 13.	3.8	63
50	Subinhibitory concentrations of β-lactam induce haemolytic activity inStaphylococcus aureusthrough the SaeRS two-component system. FEMS Microbiology Letters, 2007, 268, 98-105.	1.8	104
51	Novel Mechanism of Antibiotic Resistance Originating in Vancomycin-Intermediate <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2006, 50, 428-438.	3.2	213
52	Correlation between Reduced Daptomycin Susceptibility and Vancomycin Resistance in Vancomycin-Intermediate <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2006, 50, 1079-1082.	3.2	400
53	DNA Microarray-Based Identification of Genes Associated with Glycopeptide Resistance in <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2005, 49, 3404-3413.	3.2	150
54	Whole-Genome Sequencing of Staphylococcus haemolyticus Uncovers the Extreme Plasticity of Its Genome and the Evolution of Human-Colonizing Staphylococcal Species. Journal of Bacteriology, 2005, 187, 7292-7308.	2.2	306

LONGZHU СИІ

#	Article	IF	CITATIONS
55	Has vancomycin-resistant Staphylococcus aureus started going it alone?. Lancet, The, 2004, 364, 565-566.	13.7	14
56	Antibacterial activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus. International Journal of Antimicrobial Agents, 2003, 22, 545-547.	2.5	68
57	Physiological and molecular analysis of a mecA-negative Staphylococcus aureus clinical strain that expresses heterogeneous methicillin resistance. Journal of Antimicrobial Chemotherapy, 2003, 51, 247-255.	3.0	23
58	Cell Wall Thickening Is a Common Feature of Vancomycin Resistance in <i>Staphylococcus aureus</i> . Journal of Clinical Microbiology, 2003, 41, 5-14.	3.9	428
59	Genome and virulence determinants of high virulence community-acquired MRSA. Lancet, The, 2002, 359, 1819-1827.	13.7	1,223
60	The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends in Microbiology, 2001, 9, 486-493.	7.7	655
61	Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet, The, 2001, 357, 1225-1240.	13.7	1,835
62	Isolation in Brazil of NosocomialStaphylococcus aureusWith Reduced Susceptibility to Vancomycin. Infection Control and Hospital Epidemiology, 2001, 22, 443-448.	1.8	89
63	Combination Effect of Vancomycin and β-Lactams against a Staphylococcus aureus Strain, Mu3, with Heterogeneous Resistance to Vancomycin. Antimicrobial Agents and Chemotherapy, 2001, 45, 1292-1294.	3.2	35
64	Contribution of a Thickened Cell Wall and Its Glutamine Nonamidated Component to the Vancomycin Resistance Expressed by <i>Staphylococcus aureus</i> Mu50. Antimicrobial Agents and Chemotherapy, 2000, 44, 2276-2285.	3.2	280