
Caue Ribeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6658403/publications.pdf Version: 2024-02-01

CALLE RIBEIRO

#	Article	IF	CITATIONS
1	Cytocompatibility and osteogenic differentiation of stem cells from human exfoliated deciduous teeth with cotton cellulose nanofibers for tissue engineering and regenerative medicine. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 627-650.	3.5	1
2	Promoting CO2 electroreduction on boron-doped diamond electrodes: Challenges and trends. Current Opinion in Electrochemistry, 2022, 32, 100890.	4.8	8
3	Asbestos cement waste treatment through mechanochemical process with KH2PO4 for its utilization in soil pH correction and nutrient delivery. Environmental Science and Pollution Research, 2022, 29, 28804-28815.	5.3	1
4	Role of Cu0-TiO2 interaction in catalyst stability in CO2 photoreduction process. Journal of Environmental Chemical Engineering, 2022, 10, 107291.	6.7	7
5	Biological treatment of asbestos cement wastes by Aspergillus niger and Acidithiobacillus thiooxidans. Applied Clay Science, 2022, 216, 106375.	5.2	4
6	Bioactive Material with Microorganisms can Enhance the Micronutrients Solubilization and Sulfate Availability from Low Reactive Sources: Insight for Application as Coating Fertilizer Granules. Journal of Polymers and the Environment, 2022, 30, 2602-2613.	5.0	5
7	Unveiling the Solubilization of Potassium Mineral Rocks in Organic Acids for Application as K-Fertilizer. Applied Biochemistry and Biotechnology, 2022, 194, 2431-2447.	2.9	2
8	Bioâ€based composite granules with simultaneous biocontrol and phosphorus fertilization roles: Outcomes from a labâ€scale <i>in vitro</i> assessment. Biotechnology Progress, 2022, 38, e3242.	2.6	3
9	Photocatalytic materials applications for sustainable agriculture. Progress in Materials Science, 2022, 130, 100965.	32.8	10
10	Co-fertilization of Sulfur and Struvite-Phosphorus in a Slow-Release Fertilizer Improves Soybean Cultivation. Frontiers in Plant Science, 2022, 13, .	3.6	10
11	Role of Slow-Release Phosphate Nanofertilizers in Forage Nutrition and Phosphorus Lability. ACS Agricultural Science and Technology, 2022, 2, 564-572.	2.3	5
12	Selective methane photooxidation into methanol under mild conditions promoted by highly dispersed Cu atoms on crystalline carbon nitrides. Chemical Communications, 2022, 58, 7419-7422.	4.1	16
13	Experimental evaluation of the activity and selectivity of pure MnWO4 and doped with rare earth ions in the CO2 photoreduction process. Materials Research Bulletin, 2022, 153, 111912.	5.2	9
14	Zinc loading in urea-formaldehyde nanocomposites increases nitrogen and zinc micronutrient fertilization efficiencies in poor sand substrate. Science of the Total Environment, 2022, 841, 156688.	8.0	9
15	A Versatile Nb ₂ 0 ₅ /SnO ₂ Heterostructure for Different Environmental Purposes: Water Treatment and Artificial Photosynthesis. ChemCatChem, 2021, 13, 730-738.	3.7	6
16	Facile preparation of ZnO:g-C3N4 heterostructures and their application in amiloride photodegradation and CO2 photoreduction. Journal of Alloys and Compounds, 2021, 856, 156798.	5.5	21
17	Improving g-C3N4:WO3 Z-scheme photocatalytic performance under visible light by multivariate optimization of g-C3N4 synthesis. Applied Surface Science, 2021, 537, 147904.	6.1	37
18	Microwave-assisted synthesis of Ca1-xMnxMoO4 (x = 0, 0.2, 0.7, and 1) and its application in artificial photosynthesis. Ceramics International, 2021, 47, 5388-5398.	4.8	5

#	Article	IF	CITATIONS
19	Photocatalytic CO2 reduction over Nb2O5/basic bismuth nitrate nanocomposites. Materials Research Bulletin, 2021, 133, 111073.	5.2	15
20	A microwaveâ€based oneâ€pot process for homogeneous surface coating: improved electrochemical performance of Li(Ni _{1/3} Mn _{1/3} Co _{1/3})O ₂ with a nanoâ€scaled ZnO:Al layer. Nano Select, 2021, 2, 146-157.	3.7	1
21	Amino–Imino Tautomerism in the Salt Formation of Albendazole: Hydrobromide and Nitrate Salts. Crystal Growth and Design, 2021, 21, 1122-1135.	3.0	9
22	Improved Alfalfa Phosphate Utilization Using Zeolite Amendments in Low pH Soil. Journal of Soil Science and Plant Nutrition, 2021, 21, 1307-1317.	3.4	6
23	Synergy of Phosphate-Controlled Release and Sulfur Oxidation in Novel Polysulfide Composites for Sustainable Fertilization. Journal of Agricultural and Food Chemistry, 2021, 69, 2392-2402.	5.2	18
24	Effect of Different Surface-Charged Lamellar Materials on Swelling Properties of Nanocomposite Hydrogels. Journal of Polymers and the Environment, 2021, 29, 3311-3323.	5.0	4
25	Synergy of Aspergillus niger and Components in Biofertilizer Composites Increases the Availability of Nutrients to Plants. Current Microbiology, 2021, 78, 1529-1542.	2.2	9
26	Different Zn loading in Urea–Formaldehyde influences the N controlled release by structure modification. Scientific Reports, 2021, 11, 7621.	3.3	10
27	A green K-fertilizer using mechanical activation to improve the solubilization of a low-reactivity potassium mineral by Aspergillus niger. Bioresource Technology Reports, 2021, 15, 100711.	2.7	7
28	MnCl2 doping increases phase stability of tin halide perovskites. Materials Science in Semiconductor Processing, 2021, 132, 105908.	4.0	5
29	Mechanochemical synthesis of eco-friendly fertilizer from eggshell (calcite) and KH2PO4. Advanced Powder Technology, 2021, 32, 4070-4077.	4.1	13
30	Driving a sustainable application of <i>s</i> -triazine ametryn and atrazine herbicides through multicomponent crystals with improved solubility. CrystEngComm, 2021, 23, 4252-4263.	2.6	7
31	Enhancing Nb2O5 activity for CO2 photoreduction through Cu nanoparticles cocatalyst deposited by DC-magnetron sputtering. Journal of CO2 Utilization, 2021, 53, 101739.	6.8	12
32	Synthesis and Characterization of Tin Halide Perovskites Based on Different Tin(II) precursors. Materials Letters, 2021, 308, 131163.	2.6	1
33	Preparation and Application of Nb2O5 Nanofibers in CO2 Photoconversion. Nanomaterials, 2021, 11, 3268.	4.1	9
34	Biodegradable oil-based polymeric coatings on urea fertilizer: N release kinetic transformations of urea in soil. Scientia Agricola, 2020, 77, .	1.2	23
35	Enhancing TiO2 activity for CO2 photoreduction through MgO decoration. Journal of CO2 Utilization, 2020, 35, 106-114.	6.8	43
36	Fabrication of SrTiO3/g-C3N4 heterostructures for visible light-induced photocatalysis. Materials Science in Semiconductor Processing, 2020, 108, 104887.	4.0	31

#	Article	IF	CITATIONS
37	Role of urea and melamine as synergic co-plasticizers for starch composites for fertilizer application. International Journal of Biological Macromolecules, 2020, 144, 143-150.	7.5	29
38	Solar-heating boosted catalytic reduction of CO2 under full-solar spectrum. Chinese Journal of Catalysis, 2020, 41, 131-139.	14.0	58
39	Oil-based polyurethane-coated urea reduces nitrous oxide emissions in a corn field in a Maryland loamy sand soil. Journal of Cleaner Production, 2020, 249, 119329.	9.3	29
40	Polyurethane nanocomposites can increase the release control in granulated fertilizers by controlling nutrient diffusion. Applied Clay Science, 2020, 199, 105874.	5.2	15
41	Experimental Evidence of CO ₂ Photoreduction Activity of SnO ₂ Nanoparticles. ChemPhysChem, 2020, 21, 2392-2396.	2.1	13
42	Tailoring Efficient Materials for NPK All-in-One Granular Fertilization. Industrial & Engineering Chemistry Research, 2020, 59, 18387-18395.	3.7	5
43	Synergy between castor oil polyurethane/starch polymer coating and local acidification by A. niger for increasing the efficiency of nitrogen fertilization using urea granules. Industrial Crops and Products, 2020, 154, 112717.	5.2	11
44	CuO Decoration Controls Nb ₂ O ₅ Photocatalyst Selectivity in CO ₂ 2 Reduction. ACS Applied Energy Materials, 2020, 3, 7629-7636.	5.1	37
45	Crystallization time in ZnO: the role of surface OH groups in its photoactivity. New Journal of Chemistry, 2020, 44, 18216-18224.	2.8	12
46	Unveiling the role of peroxo groups in Nb2O5 photocatalytic efficiency under visible light. Materials Letters, 2020, 273, 127915.	2.6	7
47	Rapid microwave-assisted hydrothermal synthesis of CuBi2O4 and its application for the artificial photosynthesis. Materials Letters, 2020, 275, 128165.	2.6	15
48	Development of a water erosion tracer using industrial residue as a source of rare earth elements. Applied Clay Science, 2020, 195, 105709.	5.2	3
49	Unveiling CuO role in CO2 photoreduction process – Catalyst or reactant?. Catalysis Communications, 2020, 137, 105929.	3.3	23
50	Towards urea and glycerol utilization as "building blocks―for polyurethane production: A detailed study about reactivity and structure for environmentally friendly polymer synthesis. Reactive and Functional Polymers, 2020, 153, 104629.	4.1	11
51	Electrochemical reduction of CO ₂ to formic acid on Bi ₂ O ₂ CO ₃ /carbon fiber electrodes. Journal of Materials Research, 2020, 35, 272-280.	2.6	14
52	Analysis of NH3-N Slow Release systems for fiber digestibility of low-quality forage: in vitro approach. Scientia Agricola, 2020, 77, .	1.2	0
53	Growth of tomato seedlings in substrates containing a nanocomposite hydrogel with calcium montmorillonite (NC-MMt). Horticultura Brasileira, 2019, 37, 199-203.	0.5	14
54	Insights into formation of anatase TiO2 nanoparticles from peroxo titanium complex degradation under microwave-assisted hydrothermal treatment. Ceramics International, 2019, 45, 22998-23006.	4.8	21

#	Article	IF	CITATIONS
55	Controlled release of nitrogen using urea-melamine-starch composites. Journal of Cleaner Production, 2019, 217, 448-455.	9.3	37
56	Insights into the role of CuO in the CO2 photoreduction process. Scientific Reports, 2019, 9, 1316.	3.3	49
57	Why nonconventional materials are answers for sustainable agriculture. MRS Energy & Sustainability, 2019, 6, 1.	3.0	20
58	ZnO:ZnWO4 heterostructure with enhanced photocatalytic activity for pollutant degradation in liquid and gas phases. Journal of Alloys and Compounds, 2019, 797, 1299-1309.	5.5	26
59	Challenges of Synthesis and Environmental Applications of Metal-Free Nano-heterojunctions. Environmental Chemistry for A Sustainable World, 2019, , 107-138.	0.5	0
60	Sulfur fertilizer based on inverse vulcanization process with soybean oil. Polymer Degradation and Stability, 2019, 162, 102-105.	5.8	82
61	Zn-doped Nb2O5 photocatalysts driven by visible-light: An experimental and theoretical study. Materials Chemistry and Physics, 2019, 228, 160-167.	4.0	32
62	Highly water soluble agrichemicals by using engineered organic salts for reducing adverse environmental impacts. Green Chemistry, 2019, 21, 6419-6429.	9.0	11
63	Acidic surface niobium pentoxide is catalytic active for CO2 photoreduction. Applied Catalysis B: Environmental, 2019, 242, 349-357.	20.2	63
64	Zn–Al-based layered double hydroxides (LDH) active structures for dental restorative materials. Journal of Materials Research and Technology, 2019, 8, 1250-1257.	5.8	13
65	SEMICONDUTORES HETEROESTRUTURADOS: UMA ABORDAGEM SOBRE OS PRINCIPAIS DESAFIOS PARA A OBTENĂ‡ĂƒO E APLICAĂ‡ĂƒO EM PROCESSOS FOTOQUĂMICOS AMBIENTAIS E ENERGÉTICOS. Quimica Nova 2019, , .	, 0.3	2
66	Controlled Release of Phosphate from Layered Double Hydroxide Structures: Dynamics in Soil and Application as Smart Fertilizer. ACS Sustainable Chemistry and Engineering, 2018, 6, 5152-5161.	6.7	82
67	Insights into the photocatalytic performance of Bi ₂ O ₂ CO ₃ /BiVO ₄ heterostructures prepared by one-step hydrothermal method. RSC Advances, 2018, 8, 10889-10897.	3.6	23
68	Role of crystallinity on the optical properties of Na2V6O16·3H2O nanowires. Journal of Alloys and Compounds, 2018, 731, 1119-1124.	5.5	3
69	Photoactivity of N-doped ZnO nanoparticles in oxidative and reductive reactions. Applied Surface Science, 2018, 433, 879-886.	6.1	51
70	High-performance ultraviolet-visible driven ZnO morphologies photocatalyst obtained by microwave-assisted hydrothermal method. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 358-367.	3.9	33
71	A Novel, Simple Route to Produce Urea:Urea–Formaldehyde Composites for Controlled Release of Fertilizers. Journal of Polymers and the Environment, 2018, 26, 2448-2458.	5.0	19
72	New Approach of the Oxidant Peroxo Method (OPM) Route to Obtain Ti(OH) ₄ Nanoparticles with High Photocatalytic Activity under Visible Radiation. International Journal of Photoenergy, 2018, 2018, 1-10.	2.5	14

#	Article	IF	CITATIONS
73	Nanocomposite of starch-phosphate rock bioactivated for environmentally-friendly fertilization. Minerals Engineering, 2018, 128, 230-237.	4.3	20
74	[Mg-Al]-LDH and [Zn-Al]-LDH as Matrices for Removal of High Loadings of Phosphate. Materials Research, 2018, 21, .	1.3	29
75	Smart Fertilization Based on Sulfur–Phosphate Composites: Synergy among Materials in a Structure with Multiple Fertilization Roles. ACS Sustainable Chemistry and Engineering, 2018, 6, 12187-12196.	6.7	23
76	A Fed-Batch Strategy Integrated with Mechanical Activation Improves the Solubilization of Phosphate Rock by <i>Aspergillus niger</i> . ACS Sustainable Chemistry and Engineering, 2018, 6, 11326-11334.	6.7	13
77	Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2–rGO heterostructure. Journal of Materials Science: Materials in Electronics, 2018, 29, 17022-17037.	2.2	14
78	Strategy for Multinutrient Application in Integrated Granules Using Zein as a Coating Layer. Journal of Agricultural and Food Chemistry, 2018, 66, 9582-9587.	5.2	12
79	A novel combined mechanical-biological approach to improve rock phosphate solubilization. International Journal of Mineral Processing, 2017, 161, 50-58.	2.6	32
80	Charge transfer mechanism of WO 3 /TiO 2 heterostructure for photoelectrochemical water splitting. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 339, 95-102.	3.9	39
81	The interplay between morphology and photocatalytic activity in ZnO and N-doped ZnO crystals. Materials and Design, 2017, 120, 363-375.	7.0	79
82	Role of Slow-Release Nanocomposite Fertilizers on Nitrogen and Phosphate Availability in Soil. Scientific Reports, 2017, 7, 46032.	3.3	135
83	Synthesis of ZnO Nanoparticles Assisted by N Sources and their Application in the Photodegradation of Organic Contaminants. ChemCatChem, 2017, 9, 3795-3804.	3.7	33
84	Nanoscaled Platforms Based on SiO2 and Al2O3 Impregnated with Potassium Permanganate Use Color Changes to Indicate Ethylene Removal. Food and Bioprocess Technology, 2017, 10, 1622-1630.	4.7	39
85	g-C3N4/Nb2O5 heterostructures tailored by sonochemical synthesis: Enhanced photocatalytic performance in oxidation of emerging pollutants driven by visible radiation. Applied Catalysis B: Environmental, 2017, 216, 70-79.	20.2	114
86	A building blocks strategy for preparing photocatalytically active anatase TiO2/rutile SnO2 heterostructures by hydrothermal annealing. Journal of Colloid and Interface Science, 2017, 505, 454-459.	9.4	31
87	Synthesis and characterization of eco-friendly Ca-Al-LDH loaded with phosphate for agricultural applications. Applied Clay Science, 2017, 137, 143-150.	5.2	45
88	Controlled Urea Release Employing Nanocomposites Increases the Efficiency of Nitrogen Use by Forage. ACS Sustainable Chemistry and Engineering, 2017, 5, 9993-10001.	6.7	53
89	Preparation, characterization and application of phase-pure anatase and rutile TiO2 nanoparticles by new green route. Journal of Materials Science: Materials in Electronics, 2017, 28, 16932-16938.	2.2	13
90	Role of Polymeric Coating on the Phosphate Availability as a Fertilizer: Insight from Phosphate Release by Castor Polyurethane Coatings. Journal of Agricultural and Food Chemistry, 2017, 65, 5890-5895.	5.2	74

#	Article	IF	CITATIONS
91	SrTi1â^'yFeyO3 samples obtained by hydrothermal method: The effect of the amount of Fe on structural and photocatalytic properties. Materials Science in Semiconductor Processing, 2017, 68, 140-146.	4.0	5
92	Growth of BiVO ₄ Nanoparticles on a Bi ₂ O ₃ Surface: Effect of Heterojunction Formation on Visible Irradiation-Driven Catalytic Performance. Journal of Physical Chemistry C, 2017, 121, 13747-13756.	3.1	37
93	Synthesis of g-C 3 N 4 /Nb 2 O 5 heterostructures and their application in the removal of organic pollutants under visible and ultraviolet irradiation. Ceramics International, 2017, 43, 3521-3530.	4.8	49
94	UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sensors and Actuators B: Chemical, 2017, 240, 573-579.	7.8	108
95	Enhanced Cr(VI) photoreduction in aqueous solution using Nb2O5/CuO heterostructures under UV and visible irradiation. Chemical Engineering Journal, 2017, 312, 220-227.	12.7	55
96	ZnO/SnO2 Heterojunctions Sensors with UV-Enhanced Gas-Sensing Properties at Room Temperature. Proceedings (mdpi), 2017, 1, 418.	0.2	4
97	N-doping SrTiO3@SrCO3 heterostructure electrode: Synthesis, electrochemical characterization, and varistor application. Ceramics International, 2017, 43, 11722-11732.	4.8	13
98	Characterization of Single Superphosphate Powders – a study of Milling Effects on Solubilization Kinetics. Materials Research, 2016, 19, 98-105.	1.3	42
99	Utilização de partÃculas de ZnO:Mn para a degradação do azul de metileno por processo de fotocatálise. Ceramica, 2016, 62, 345-350.	0.8	2
100	An Understanding of the Photocatalytic Properties and Pollutant Degradation Mechanism of SrTiO ₃ Nanoparticles. Photochemistry and Photobiology, 2016, 92, 371-378.	2.5	49
101	Controlled release of nitrogenâ€source fertilizers by naturalâ€oilâ€based poly(urethane) coatings: The kinetic aspects of urea release. Journal of Applied Polymer Science, 2016, 133, .	2.6	68
102	Nanocomposite fibers of poly(lactic acid)/titanium dioxide prepared by solution blow spinning. Polymer Bulletin, 2016, 73, 2973-2985.	3.3	36
103	Nitrogen-doped titanium dioxide: An overview of material design and dimensionality effect over modern applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 27, 1-29.	11.6	102
104	A comparative run for visible-light-driven photocatalytic activity of anionic and cationic S-doped TiO2 photocatalysts: A case study of possible sulfur doping through chemical protocol. Journal of Molecular Catalysis A, 2016, 421, 1-15.	4.8	59
105	Macro- and Micronutrient Simultaneous Slow Release from Highly Swellable Nanocomposite Hydrogels. Journal of Agricultural and Food Chemistry, 2016, 64, 3133-3140.	5.2	44
106	Optimized Porous Anodic Alumina Membranes for Water Ultrafiltration of Pathogenic Bacteria (E.) Tj ETQq0 0 C) rgBT/Ove	rloçk 10 Tf 50
107	Prospective aspects of preferential {001} facets of N,S-co-doped TiO ₂ photocatalysts for visible-light-responsive photocatalytic activity. RSC Advances, 2016, 6, 89274-89287.	3.6	17

 $[\]begin{array}{ll} 108 & \mbox{Photoelectrochemical and theoretical investigation of the photocatalytic activity of} \\ TiO₂arrow.activity.site % N. RSC Advances, 2016, 6, 89687-89698. \end{array}$

#	Article	IF	CITATIONS
109	Study of the morphological evolution of vanadium pentoxide nanostructures under hydrothermal conditions. CrystEngComm, 2016, 18, 7636-7641.	2.6	4
110	Synergistic effect on the photocatalytic activity of N-doped TiO2 nanorods synthesised by novel route with exposed (110) facet. Journal of Alloys and Compounds, 2016, 666, 38-49.	5.5	66
111	Slow release fertilizers based on urea/urea–formaldehyde polymer nanocomposites. Chemical Engineering Journal, 2016, 287, 390-397.	12.7	121
112	Low temperature synthesis of N-doped TiO 2 with rice-like morphology through peroxo assisted hydrothermal route: Materials characterization and photocatalytic properties. Applied Surface Science, 2016, 377, 121-133.	6.1	51
113	Rapid and morphology controlled synthesis of anionic S-doped TiO ₂ photocatalysts for the visible-light-driven photodegradation of organic pollutants. RSC Advances, 2016, 6, 36516-36527.	3.6	45
114	CuO synthesized by solvothermal method as a high capacity adsorbent for hexavalent chromium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498, 161-167.	4.7	43
115	Physico-chemical assessment of [Mg-Al-PO4]-LDHs obtained by structural reconstruction in high concentration of phosphate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 53-62.	4.7	36
116	Controlled synthesis of BiVO 4 photocatalysts: Evidence of the role of heterojunctions in their catalytic performance driven by visible-light. Applied Catalysis B: Environmental, 2016, 188, 87-97.	20.2	128
117	Different dye degradation mechanisms for ZnO and ZnO doped with N (ZnO:N). Journal of Molecular Catalysis A, 2016, 417, 89-100.	4.8	65
118	An insight toward the photocatalytic activity of S doped 1-D TiO2 nanorods prepared via novel route: As promising platform for environmental leap. Journal of Molecular Catalysis A, 2016, 412, 78-92.	4.8	52
119	Hierarchical growth of ZnO nanorods over SnO ₂ seed layer: insights into electronic properties from photocatalytic activity. RSC Advances, 2016, 6, 2112-2118.	3.6	44
120	Rutile supported anatase nanostructured films as photocatalysts for the degradation of water contaminants. Ceramics International, 2016, 42, 808-819.	4.8	7
121	Photoprotective effect of starch/montmorillonite composites on ultraviolet-induced degradation of herbicides. Reactive and Functional Polymers, 2015, 93, 156-162.	4.1	14
122	Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO ₂) Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	30
123	Blue to Yellow Photoluminescence Emission and Photocatalytic Activity of Nitrogen Doping in TiO _{2} Powders. International Journal of Photoenergy, 2015, 2015, 1-12.	2.5	9
124	Perspectives in Nanocomposites for the Slow and Controlled Release of Agrochemicals: Fertilizers and Pesticides. , 2015, , 241-265.		10
125	Effect of processing variables on the photocatalytic properties of ZnO thin films prepared using the polymeric precursor method. Ceramics International, 2015, 41, 10587-10594.	4.8	14
126	Synthesis of BiVO ₄ via oxidant peroxo-method: insights into the photocatalytic performance and degradation mechanism of pollutants. New Journal of Chemistry, 2015, 39, 6231-6237.	2.8	58

#	Article	IF	CITATIONS
127	Controlled release from hydroxyapatite nanoparticles incorporated into biodegradable, soluble host matrixes. RSC Advances, 2015, 5, 104179-104186.	3.6	33
128	Vanadium pentoxide 1-D nanostructures applied to dye removal from aqueous systems by coupling adsorption and visible-light photodegradation. RSC Advances, 2015, 5, 12000-12006.	3.6	49
129	An easy method of preparing ozone gas sensors based on ZnO nanorods. RSC Advances, 2015, 5, 19528-19533.	3.6	68
130	Zinc hydroxide/oxide and zinc hydroxy stannate photocatalysts as potential scaffolds for environmental remediation. New Journal of Chemistry, 2015, 39, 4624-4630.	2.8	21
131	Insight into the Photocatalytical Activity of TiO2 Nanoparticles Through the Electrochemical Characterization of Carbon Paste Electrodes. Electrocatalysis, 2015, 6, 92-101.	3.0	6
132	Novel Slow-Release Nanocomposite Nitrogen Fertilizers: The Impact of Polymers on Nanocomposite Properties and Function. Industrial & amp; Engineering Chemistry Research, 2015, 54, 3717-3725.	3.7	92
133	Heterostructure formation from hydrothermal annealing of preformed nanocrystals. Journal of Materials Chemistry A, 2015, 3, 2216-2225.	10.3	29
134	Production of heterostructured TiO2/WO3 Nanoparticulated photocatalysts through a simple one pot method. Ceramics International, 2015, 41, 3502-3510.	4.8	22
135	Rapid hydrothermal synthesis and pH-dependent photocatalysis of strontium titanate microspheres. Materials Science in Semiconductor Processing, 2015, 30, 651-657.	4.0	43
136	Evaluation of reaction factors for deposition of silica (SiO2) nanoparticles on cellulose fibers. Carbohydrate Polymers, 2014, 114, 424-431.	10.2	70
137	Study of a nanocomposite starch–clay for slowâ€release of herbicides: Evidence of synergistic effects between the biodegradable matrix and exfoliated clay on herbicide release control. Journal of Applied Polymer Science, 2014, 131, .	2.6	24
138	Insight into magnetite nanoparticle phase evolution in solvothermal synthesis through a simple method based on iron chloride and metallic iron. RSC Advances, 2014, 4, 53265-53272.	3.6	9
139	NIOBIUM OXIDES: AN OVERVIEW OF THE SYNTHESIS OF Nb ₂ O ₅ AND ITS APPLICATION IN HETEROGENEOUS PHOTOCATALYSIS. Quimica Nova, 2014, , .	0.3	16
140	Hydrothermal synthesis and photocatalytic properties of anatase TiO2 nanocrystals obtained from peroxytitanium complex precursor. Materials Science in Semiconductor Processing, 2014, 25, 320-329.	4.0	14
141	Microwave hydrothermal synthesis, characterisation, and catalytic performance of Zn1â^'x MnxO in cellulose conversion. Chemical Papers, 2014, 68, .	2.2	0
142	TiO2-SnO2 heterostructures applied to dye photodegradation: The relationship between variables of synthesis and photocatalytic performance. Applied Surface Science, 2014, 298, 182-191.	6.1	59
143	The Role of the Relative Dye/Photocatalyst Concentration in <scp><scp>TiO</scp></scp> ₂ Assisted Photodegradation Process. Photochemistry and Photobiology, 2014, 90, 66-72.	2.5	36
144	Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose, 2014, 21, 311-322.	4.9	73

#	Article	IF	CITATIONS
145	WO ₃ /TiO ₂ heterostructures tailored by the oriented attachment mechanism: insights from their photocatalytic properties. CrystEngComm, 2014, 16, 1514-1524.	2.6	44
146	Vanadium-doped TiO2 anatase nanostructures: the role of V in solid solution formation and its effect on the optical properties. CrystEngComm, 2014, 16, 5021.	2.6	43
147	Self-Assembly of Metal and Metal Oxide Nanoparticles and Nanowires into a Macroscopic Ternary Aerogel Monolith with Tailored Photocatalytic Properties. Chemistry of Materials, 2014, 26, 5576-5584.	6.7	67
148	Influence of calcination parameters on the synthesis of N-doped TiO2 by the polymeric precursors method. Journal of Solid State Chemistry, 2014, 215, 211-218.	2.9	21
149	Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study. Applied Catalysis B: Environmental, 2014, 144, 800-808.	20.2	202
150	STUDY OF THE CONTROLLED RELEASE OF AMETRYN HERBICIDE USING PVA - ACTIVATED CARBON COMPOSITES. Quimica Nova, 2014, , .	0.3	1
151	Study of the effect of rutile/anatase TiO ₂ nanoparticles synthesized by hydrothermal route in electrospun PVA/TiO ₂ nanocomposites. Journal of Applied Polymer Science, 2013, 127, 4463-4469.	2.6	21
152	Nanocomposite PAAm/Methyl Cellulose/Montmorillonite Hydrogel: Evidence of Synergistic Effects for the Slow Release of Fertilizers. Journal of Agricultural and Food Chemistry, 2013, 61, 7431-7439.	5.2	192
153	High-density nanoparticle ceramic bodies. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1351-1355.	3.6	6
154	Long-range and short-range structures of cube-like shape SrTiO3 powders: microwave-assisted hydrothermal synthesis and photocatalytic activity. Physical Chemistry Chemical Physics, 2013, 15, 12386.	2.8	91
155	Preparation and Photocatalytical Performance of TiO ₂ :SiO ₂ Nanocomposites Produced by the Polymeric Precursors Method. Journal of Nanoscience and Nanotechnology, 2013, 13, 5126-5133.	0.9	5
156	Avaliação do uso de resÃduos de construção e demolição reciclados como corretivo da acidez do solo. Revista Brasileira De Ciencia Do Solo, 2013, 37, 1659-1668.	1.3	10
157	A Study of the Precursors and Photoactivity of Nanostructures of Ti Oxides Synthesized by the Alkaline Hydrothermal Method. Science of Advanced Materials, 2013, 5, 71-85.	0.7	8
158	Avaliação do potencial de uso da hidroxiapatita para fertilização de solos. Quimica Nova, 2013, 36, 790-792.	0.3	3
159	Preparação e Caracterização de Compósitos Poliméricos Baseados em Amido Termoplástico e Materiais de Alta Ārea Superficial: Zeólita ZSM-5 e SÃlica Coloidal. Polimeros, 2013, 23, 236-241.	0.7	1
160	Generation of copper nanoparticles induced by fs-laser irradiation in borosilicate glass. Optics Express, 2012, 20, 15106.	3.4	50
161	Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles. Optics Express, 2012, 20, 21107.	3.4	19
162	Evaluation of the catalytic activity of oxide nanoparticles synthesized by the polymeric precursor method on biodiesel production. Journal of Materials Research, 2012, 27, 3020-3026.	2.6	12

#	Article	IF	CITATIONS
163	Crystallization and Growth of Colloidal Nanocrystals. SpringerBriefs in Materials, 2012, , .	0.3	34
164	Improved Photocatalytic Activity of Anisotropic Rutile/Anatase TiO ₂ Nanoparticles Synthesized by the Ti-Peroxo Complex Method. Journal of Nanoscience and Nanotechnology, 2012, 12, 4678-4684.	0.9	4
165	Oriented Attachment and Mesocrystals. SpringerBriefs in Materials, 2012, , 45-68.	0.3	2
166	Trends and Perspectives in Nanoparticles Synthesis. SpringerBriefs in Materials, 2012, , 83-92.	0.3	2
167	Urea–Montmorillonite-Extruded Nanocomposites: A Novel Slow-Release Material. Journal of Agricultural and Food Chemistry, 2012, 60, 5267-5272.	5.2	141
168	lon-sensing properties of 1D vanadium pentoxide nanostructures. Nanoscale Research Letters, 2012, 7, 310.	5.7	24
169	CeO ₂ nanoparticles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods. CrystEngComm, 2012, 14, 1150-1154.	2.6	108
170	Hydrothermal synthesis of Ti oxide nanostructures and TiO2:SnO2 heterostructures applied to the photodegradation of rhodamine B. Materials Chemistry and Physics, 2012, 135, 524-532.	4.0	30
171	Effect of synthesis parameters on the structural characteristics and photocatalytic activity of ZnO. Materials Chemistry and Physics, 2012, 136, 505-511.	4.0	31
172	Avaliação de metodologia eletroquÃmica no monitoramento da conversão de Ã3leo de girassol em biodiesel. Quimica Nova, 2012, 35, 51-54.	0.3	1
173	Eletrofiação de polÃmeros em solução: parte II: aplicações e perspectivas. Polimeros, 2012, 22, 178-185.	0.7	13
174	Eletrofiação de PolÃmeros em Solução: parte l: fundamentação TeÃf³rica. Polimeros, 2012, 22, 170-177	7.0.7	33
175	Nuclear magnetic resonance spectroscopic analysis of ethyl ester yield in the transesterification of vegetable oil: an accurate method for a truly quantitative analysis. Magnetic Resonance in Chemistry, 2012, 50, 1-4.	1.9	10
176	Application of polysaccharide hydrogels in adsorption and controlledâ€extended release of fertilizers processes. Journal of Applied Polymer Science, 2012, 123, 2291-2298.	2.6	68
177	Classical Crystallization Model: Nucleation and Growth. SpringerBriefs in Materials, 2012, , 19-43.	0.3	4
178	Microwave Hydrothermal Synthesis and Photocatalytic Performance of ZnO and <i>M</i> :ZnO Nanostructures (<i> M</i> = V, Fe, Co). Science of Advanced Materials, 2012, 4, 54-60.	0.7	32
179	Oriented Attachment (OA) with Solid–Solid Interface. SpringerBriefs in Materials, 2012, , 69-81.	0.3	0
180	An efficient synthesis route of Na2V6O16·nH2O nanowires in hydrothermal conditions. Materials Chemistry and Physics, 2011, 127, 56-61.	4.0	22

11

#	Article	IF	CITATIONS
181	Local structure study of vanadium pentoxide 1D-nanostructures. Journal of Nanoparticle Research, 2011, 13, 4937-4946.	1.9	32
182	Influence of TiO2 morphological parameters in dye photodegradation: A comparative study in peroxo-based synthesis. Applied Catalysis B: Environmental, 2011, 105, 298-305.	20.2	47
183	Facile synthesis of N-doped TiO2 nanoparticles by a modified polymeric precursor method and its photocatalytic properties. Applied Catalysis B: Environmental, 2011, 106, 287-294.	20.2	59
184	TiO ₂ and SnO ₂ Magnetic Nanocomposites: Influence of Semiconductors and Synthetic Methods on Photoactivity. Journal of Nanoscience and Nanotechnology, 2011, 11, 7876-7883.	0.9	6
185	Annealing Effects on the Photocatalytic Activity of ZnO Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 3635-3640.	0.9	38
186	Growth kinetics of vanadium pentoxide nanostructures under hydrothermal conditions. Journal of Crystal Growth, 2010, 312, 3555-3559.	1.5	24
187	Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose, 2010, 17, 595-606.	4.9	322
188	Synthesis of TiO2-coated CoFe2O4 photocatalysts applied to the photodegradation of atrazine and rhodamine B in water. Applied Catalysis A: General, 2010, 382, 284-292.	4.3	91
189	Nanofibras de algodão obtidas sob diferentes condições de hidrólise ácida. Polimeros, 2010, 20, 264-268.	0.7	35
190	Morphological and Photocatalytic Properties of PVA/TiO ₂ Nanocomposite Fibers Produced by Electrospinning. Journal of Nanoscience and Nanotechnology, 2010, 10, 5144-5152.	0.9	21
191	Impact of the colloidal state on the oriented attachment growth mechanism. Nanoscale, 2010, 2, 2336.	5.6	118
192	Preparation and Characterization of PVA–Ag Nanocomposite Fibers with Antibacterial Activities. Science of Advanced Materials, 2010, 2, 157-162.	0.7	12
193	Phase Transformation in Titania Nanocrystals by the Oriented Attachment Mechanism: The Role of the pH Value. Chemistry - A European Journal, 2009, 15, 2217-2222.	3.3	41
194	Antimonyâ€Doped Tin Oxide Nanocrystals: Synthesis and Solubility Behavior in Organic Solvents. ChemPhysChem, 2009, 10, 841-846.	2.1	15
195	Effect of TiO2 surface modification in Rhodamine B photodegradation. Journal of Sol-Gel Science and Technology, 2009, 49, 95-100.	2.4	64
196	Heterogeneous Fenton reactants: a study of the behavior of iron oxide nanoparticles obtained by the polymeric precursor method. Journal of Sol-Gel Science and Technology, 2009, 52, 299-303.	2.4	18
197	Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes. Applied Catalysis B: Environmental, 2009, 90, 205-212.	20.2	103
198	Vanadium Pentoxide Nanostructures: An Effective Control of Morphology and Crystal Structure in Hydrothermal Conditions. Crystal Growth and Design, 2009, 9, 3626-3631.	3.0	112

#	Article	IF	CITATIONS
199	Nanosized lead lanthanum titanate (PLT) ceramic powders synthesized by the oxidant peroxo method. Journal of Alloys and Compounds, 2009, 475, 817-821.	5.5	14
200	Growth of Highly <i>c</i> -Axis-Oriented ZnO Nanorods on ZnO/Glass Substrate: Growth Mechanism, Structural, and Optical Properties. Journal of Physical Chemistry C, 2009, 113, 14715-14720.	3.1	77
201	Nanoestruturas em fotocatÃ;lise: uma revisão sobre estratégias de sÃntese de fotocatalisadores em escala nanométrica. Quimica Nova, 2009, 32, 2181-2190.	0.3	48
202	Assembly and Properties of Nanoparticles. Nanostructure Science and Technology, 2009, , 33-79.	0.1	3
203	Insights for phase control in TiO2 nanoparticles from polymeric precursors method. Journal of Alloys and Compounds, 2008, 466, 435-438.	5.5	23
204	Influence of Microwave Heating on the Growth of Gadolinium-Doped Cerium Oxide Nanorods. Crystal Growth and Design, 2008, 8, 384-386.	3.0	99
205	Novel Aspects of the Purpose-Built Materials Strategy: Evidence of Topographic Template Effect and Oriented Attachment Growth Mechanism. Journal of Nanoscience and Nanotechnology, 2008, 8, 3447-3453.	0.9	3
206	Anisotropic Growth of Oxide Nanocrystals:  Insights into the Rutile TiO2 Phase. Journal of Physical Chemistry C, 2007, 111, 5871-5875.	3.1	78
207	Tailoring of heterostructures in a SnO2â^TiO2 system by the oriented attachment mechanism. Applied Physics Letters, 2007, 91, 103105.	3.3	38
208	Electrical characterization of SnO2:Sb ultrathin films obtained by controlled thickness deposition. Journal of Applied Physics, 2007, 102, .	2.5	12
209	Role of the Oriented Attachment Mechanism in the Phase Transformation of Oxide Nanocrystals. Chemistry - A European Journal, 2007, 13, 5798-5803.	3.3	33
210	Controlled Thickness Deposition of Ultrathin Ceramic Films by Spin Coating. Journal of the American Ceramic Society, 2006, 89, 2016-2020.	3.8	10
211	Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions. Chemical Physics, 2006, 328, 229-235.	1.9	52
212	Oriented Attachment Mechanism in Anisotropic Nanocrystals: A "Polymerization―Approach. ChemPhysChem, 2006, 7, 664-670.	2.1	85
213	Deposition of Controlled Thickness Ultrathin SnO ₂ :Sb Films by Spin-Coating. Journal of Nanoscience and Nanotechnology, 2006, 6, 3849-3853.	0.9	8
214	A Kinetic Model to Describe Nanocrystal Growth by the Oriented Attachment Mechanism. ChemPhysChem, 2005, 6, 690-696.	2.1	155
215	In situ oriented crystal growth in a ceramic nanostructured system. Journal of Applied Physics, 2005, 97, 024313.	2.5	28
216	Oriented Attachment:Â An Effective Mechanism in the Formation of Anisotropic Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 20842-20846.	2.6	201

#	Article	IF	CITATIONS
217	Study of Synthesis Variables in the Nanocrystal Growth Behavior of Tin Oxide Processed by Controlled Hydrolysis. Journal of Physical Chemistry B, 2004, 108, 15612-15617.	2.6	83
218	Photoluminescence in quantum-confined SnO2 nanocrystals: Evidence of free exciton decay. Applied Physics Letters, 2004, 84, 1745-1747.	3.3	237
219	Electric and morphologic properties of SnO2 films prepared by modified sol–gel process. Materials Letters, 2003, 57, 4378-4381.	2.6	22
220	Assessment of Mass Loss and Permeability Changes during the Dewatering Process of Refractory Castables Containing Polypropylene Fibers. Journal of the American Ceramic Society, 2002, 85, 2110-2112.	3.8	24
221	Efeito da distribuição granulométrica na secagem de concretos refratários. Ceramica, 2001, 47, 212-218.	0.8	3
222	Fluid Dynamics and Thermal Aspects of the Dewatering of Highâ€Alumina Refractory Castables: Removal of Physically Absorbed Water. Journal of the American Ceramic Society, 2001, 84, 2696-2698.	3.8	14
223	Dynamic Permeability Behavior during Drying of Refractory Castables Based on Calciumâ€Free Alumina Binders. Journal of the American Ceramic Society, 2001, 84, 248-250.	3.8	15
224	Biological solubilization of phosphate rock by solid-state cultivation to produce eco-friendly fertilizers. Pesquisa Agropecuaria Brasileira, 0, 56, .	0.9	3
225	REDUÇÃO DE CO2 EM HIDROCARBONETOS E OXIGENADOS: FUNDAMENTOS, ESTRATÉGIAS E DESAFIOS. Quimica Nova, 0, , .	0.3	3
226	Photoactivity of TiO2 nanoparticles covered with nitro group in Fluoxetine and Rhodamine-B degradation. , 0, 205, 252-263.		6
227	Tuning the Photocatalytic Activity of Tin Oxide Through Mechanical Surface Activation. Journal of the Brazilian Chemical Society, 0, , .	0.6	1
228	A Review of Three-Dimensional Tin Halide Perovskites as Solar Cell Materials. Materials Research, 0, 25,	1.3	5
229	Development of Bismuth Oxyhalides for Organic Pollutant Photodegradation and Water Oxidation: Effect of Synthesis Parameter and Halide Species. Journal of the Brazilian Chemical Society, 0, , .	0.6	1
230	Oneâ€pot solvothermal synthesis of Carbon blackâ€supported CuO for catalysis of CO2 electroreduction. ChemElectroChem, 0, , .	3.4	3