Catherine Mgc Renard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6656412/publications.pdf

Version: 2024-02-01

208 papers 10,240 citations

25014 57 h-index 89 g-index

213 all docs

213 docs citations

times ranked

213

9433 citing authors

#	Article	IF	CITATIONS
1	Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Critical Reviews in Food Science and Nutrition, 2012, 52, 213-248.	5.4	601
2	Interactions between apple cell walls and native apple polyphenols: quantification and some consequences. International Journal of Biological Macromolecules, 2001, 29, 115-125.	3.6	279
3	Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. Journal of Food Engineering, 2012, 111, 73-81.	2.7	262
4	Studies of the length of homogalacturonic regions in pectins by acid hydrolysis. Carbohydrate Research, 1993, 238, 271-286.	1.1	255
5	Non-covalent interaction between procyanidins and apple cell wall material. Biochimica Et Biophysica Acta - General Subjects, 2004, 1672, 192-202.	1.1	202
6	Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion. Trends in Food Science and Technology, 2017, 60, 43-51.	7.8	192
7	Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrasonics Sonochemistry, 2010, 17, 1066-1074.	3.8	187
8	Non-covalent interaction between procyanidins and apple cell wall material. Part III: Study on model polysaccharides. Biochimica Et Biophysica Acta - General Subjects, 2005, 1725, 10-18.	1.1	174
9	Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chemistry, 2009, 115, 1133-1140.	4.2	154
10	Different action patterns for apple pectin methylesterase at pH 7.0 and 4.5. Carbohydrate Research, 2000, 327, 385-393.	1.1	152
11	Characterisation and selectivity of divalent metal ions binding by citrus and sugar-beet pectins. Carbohydrate Polymers, 1996, 30, 253-263.	5.1	143
12	Characterisation of phenolic extracts from olive pulp and olive pomace by electrospray mass spectrometry. Journal of the Science of Food and Agriculture, 2005, 85, 21-32.	1.7	134
13	Characterization of pectins extracted from pomegranate peel and their gelling properties. Food Chemistry, 2017, 215, 318-325.	4.2	134
14	Structure of the repeating units in the rhamnogalacturonic backbone of apple, beet and citrus pectins. Carbohydrate Research, 1995, 275, 155-165.	1.1	131
15	Enzymatic saccharification of sugar-beet pulp. Enzyme and Microbial Technology, 1996, 19, 162-170.	1.6	124
16	Relationship between texture and pectin composition of two apple cultivars during storage. Postharvest Biology and Technology, 2008, 47, 315-324.	2.9	117
17	Variability in cell wall preparations: quantification and comparison of common methods. Carbohydrate Polymers, 2005, 60, 515-522.	5.1	116
18	Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3574-3617.	5.9	114

#	Article	IF	CITATIONS
19	Comparison of NIRS approach for prediction of internal quality traits in three fruit species. Food Chemistry, 2014, 143, 223-230.	4.2	111
20	Binding of divalent metal cations by sugar-beet pulp. Carbohydrate Polymers, 1997, 34, 73-82.	5.1	108
21	Rapid and non-destructive analysis of apricot fruit quality using FT-near-infrared spectroscopy. Food Chemistry, 2009, 113, 1323-1328.	4.2	106
22	Acetylation and methylation of homogalacturonans 1: optimisation of the reaction and characterisation of the products. Carbohydrate Polymers, 1999, 39, 201-207.	5.1	101
23	Interactions between apple (Malus x domestica Borkh.) polyphenols and cell walls modulate the extractability of polysaccharides. Carbohydrate Polymers, 2009, 75, 251-261.	5.1	100
24	Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro. European Journal of Nutrition, 2008, 47, 442-452.	1.8	97
25	Interactions between globular proteins and procyanidins of different degrees of polymerization. Journal of Dairy Science, 2009, 92, 5843-5853.	1.4	97
26	Interactions between Pectic Compounds and Procyanidins are Influenced by Methylation Degree and Chain Length. Biomacromolecules, 2013, 14, 709-718.	2.6	97
27	Structure and properties of apple and sugar-beet pectins extracted by chelating agents. Carbohydrate Research, 1993, 244, 99-114.	1.1	96
28	Studies on apple protopectin: I. Extraction of insoluble pectin by chemical means. Carbohydrate Polymers, 1990, 12, 9-25.	5.1	94
29	Comparison of the cell wall composition for flesh and skin from five different plums. Food Chemistry, 2009, 114, 1042-1049.	4.2	93
30	Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydrate Polymers, 2021, 262, 117935.	5.1	91
31	Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Research International, 2014, 60, 154-162.	2.9	89
32	Inhibition of Apple Polyphenol Oxidase Activity by Procyanidins and Polyphenol Oxidation Products. Journal of Agricultural and Food Chemistry, 2004, 52, 122-130.	2.4	88
33	Degradation of pectins in alkaline conditions: kinetics of demethylation. Carbohydrate Research, 1996, 286, 139-150.	1.1	86
34	Extraction, purification and chemical characterisation of xylogalacturonans from pea hulls. Carbohydrate Polymers, 2001, 45, 325-334.	5.1	86
35	Non-covalent interaction between procyanidins and apple cell wall material. Part II: Quantification and impact of cell wall drying. Biochimica Et Biophysica Acta - General Subjects, 2005, 1725, 1-9.	1.1	86
36	A Cross-Polarization, Magic-Angle-Spinning,13C-Nuclear-Magnetic-Resonance Study of Polysaccharides in Sugar Beet Cell Walls1. Plant Physiology, 1999, 119, 1315-1322.	2.3	85

#	Article	IF	CITATIONS
37	Concentrations and characteristics of procyanidins and other phenolics in apples during fruit growth. Phytochemistry, 2007, 68, 1128-1138.	1.4	85
38	ATR-FTIR spectroscopy to determine cell wall composition: Application on a large diversity of fruits and vegetables. Carbohydrate Polymers, 2019, 212, 186-196.	5.1	85
39	Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chemistry, 2016, 213, 58-68.	4.2	82
40	Pulsed light effects on surface decontamination, physical qualities and nutritional composition of tomato fruit. Postharvest Biology and Technology, 2013, 86, 29-36.	2.9	81
41	Folates in Fruits and Vegetables: Contents, Processing, and Stability. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 506-528.	5.9	77
42	Change in anthocyanin concentrations in red apricot fruits during ripening. LWT - Food Science and Technology, 2009, 42, 372-377.	2.5	76
43	Isolation and structural characterisation of rhamnogalacturonan oligomers generated by controlled acid hydrolysis of sugar-beet pulp. Carbohydrate Research, 1997, 305, 271-280.	1.1	75
44	Neutral sugar side chains of pectins limit interactions with procyanidins. Carbohydrate Polymers, 2014, 99, 527-536.	5.1	75
45	Studies on apple protopectin V: Structural studies on enzymatically extracted pectins. Carbohydrate Polymers, 1991, 16, 137-154.	5.1	71
46	Dehydrodiferulic acids from sugar-beet pulp. Phytochemistry, 1997, 44, 1365-1368.	1.4	71
47	Extraction of bioactives from fruit and vegetables: State of the art and perspectives. LWT - Food Science and Technology, 2018, 93, 390-395.	2.5	70
48	Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage. Planta, 2010, 232, 483-500.	1.6	69
49	Mid-infrared spectroscopy as a tool for rapid determination of internal quality parameters in tomato. Food Chemistry, 2011, 125, 1390-1397.	4.2	69
50	Impact of Noncovalent Interactions between Apple Condensed Tannins and Cell Walls on Their Transfer from Fruit to Juice: Studies in Model Suspensions and Application. Journal of Agricultural and Food Chemistry, 2007, 55, 7896-7904.	2.4	68
51	Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix. Food Chemistry, 2017, 220, 444-451.	4.2	68
52	Phenolic and polysaccharidic composition of applesauce is close to that of apple flesh. Journal of Food Composition and Analysis, 2011, 24, 537-547.	1.9	67
53	Characterization of tissue specific differences in cell wall polysaccharides of ripe and overripe pear fruit. Carbohydrate Polymers, 2017, 156, 152-164.	5.1	66
54	Glucuronic acid directly linked to galacturonic acid in the rhamnogalacturonan backbone of beet pectins. FEBS Journal, 1999, 266, 566-574.	0.2	65

#	Article	IF	Citations
55	Mode of action of RG-hydrolase and RG-lyase toward rhamnogalacturonan oligomers. Characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolase1Financed by Novo Nordisk A/S, Bagsvaerd, Denmark.1. Carbohydrate Research, 1998, 311, 155-164.	1.1	62
56	Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches. European Journal of Nutrition, 2013, 52, 833-846.	1.8	60
57	Impact of Processing on the Noncovalent Interactions between Procyanidin and Apple Cell Wall. Journal of Agricultural and Food Chemistry, 2012, 60, 9484-9494.	2.4	59
58	Acetylation and methylation of homogalacturonans 2: effect on ion-binding properties and conformations. Carbohydrate Polymers, 1999, 39, 209-216.	5.1	56
59	French cider characterization by sensory, technological and chemical evaluations. LWT - Food Science and Technology, 2006, 39, 1033-1044.	2.5	56
60	Changes in Volatiles and Glycosides during Fruit Maturation of Two Contrasted Tomato (Solanum) Tj ETQq0 0	0 rgBT ₄ /Ov	erlock 10 Tf 50
61	Characterization and quantification of fruit phenolic compounds of European and Tunisian pear cultivars. Food Research International, 2017, 95, 125-133.	2.9	56
62	Interactions of arabinan-rich pectic polysaccharides with polyphenols. Carbohydrate Polymers, 2020, 230, 115644.	5.1	56
63	The regular consumption of a polyphenol-rich apple does not influence endothelial function: a randomised double-blind trial in hypercholesterolemic adults. European Journal of Clinical Nutrition, 2010, 64, 1158-1165.	1.3	55
64	Structure and properties of the polysaccharides from pea hulls. Part 1: Chemical extraction and fractionation of the polysaccharides. Carbohydrate Polymers, 1994, 24, 139-148.	5.1	54
65	Modulating polyphenolic composition and organoleptic properties of apple juices by manipulating the pressing conditions. Food Chemistry, 2011, 124, 117-125.	4.2	53
66	Effect of Sample Preparation on the Measurement of Sugars, Organic Acids, and Polyphenols in Apple Fruit by Mid-infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 2012, 60, 3551-3563.	2.4	53
67	Impact of cooking methods on folates, ascorbic acid and lutein in green beans (Phaseolus vulgaris) and spinach (Spinacea oleracea). LWT - Food Science and Technology, 2012, 49, 197-201.	2.5	52
68	Apple, grape or orange juice: Which one offers the best substrate for lactobacilli growth? — A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics. Food Research International, 2015, 78, 352-360.	2.9	52
69	Revisiting the chemistry of apple pomace polyphenols. Food Chemistry, 2019, 294, 9-18.	4.2	52
70	Comparative study of free and glycoconjugated volatile compounds of three banana cultivars from French West Indies: Cavendish, Frayssinette and Plantain. Food Chemistry, 2011, 129, 28-34.	4.2	50
71	InÂvitro gastrointestinal digestion of pea protein isolate as a function of pH, food matrices, autoclaving, high-pressure and re-heat treatments. LWT - Food Science and Technology, 2017, 84, 511-519.	2.5	49
72	From apple to applesauce: Processing effects on dietary fibres and cell wall polysaccharides. Food Chemistry, 2009, 117, 254-260.	4.2	48

#	Article	IF	CITATIONS
73	Are folates, carotenoids and vitamin C affected by cooking? Four domestic procedures are compared on a large diversity of frozen vegetables. LWT - Food Science and Technology, 2015, 64, 735-741.	2.5	48
74	Effects of conventional boiling on the polyphenols and cell walls of pears. Journal of the Science of Food and Agriculture, 2005, 85, 310-318.	1.7	47
75	Characterization of procyanidin B2 oxidation products in an apple juice model solution and confirmation of their presence in apple juice by highâ€performance liquid chromatography coupled to electrospray ion trap mass spectrometry. Journal of Mass Spectrometry, 2011, 46, 1186-1197.	0.7	46
76	Effects of industrial processing on folate content in green vegetables. Food Chemistry, 2013, 139, 815-824.	4.2	46
77	Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Ménard apples, rich in polyphenols. British Journal of Nutrition, 2009, 102, 1620.	1.2	43
78	Procyanidinâ€"Cell Wall Interactions within Apple Matrices Decrease the Metabolization of Procyanidins by the Human Gut Microbiota and the Anti-Inflammatory Effect of the Resulting Microbial Metabolome In Vitro. Nutrients, 2019, 11, 664.	1.7	42
79	A new application of NIR spectroscopy to describe and predict purees quality from the non-destructive apple measurements. Food Chemistry, 2020, 310, 125944.	4.2	42
80	The xylose-rich pectins from pea hulls. International Journal of Biological Macromolecules, 1997, 21, 155-162.	3.6	40
81	Kinetics of temperature increase during tomato processing modulate the bioaccessibility of lycopene. Food Chemistry, 2012, 135, 2462-2469.	4.2	40
82	Structural parameters that determine the rheological properties of apple puree. Journal of Food Engineering, 2013, 119, 619-626.	2.7	40
83	Rheological characterization of the EPS produced by P. acidi-propionici on milk microfiltrate. Carbohydrate Polymers, 2003, 51, 149-158.	5.1	39
84	Does pollination affect aroma development in ripened fig [Ficus carica L.] fruit?. Scientia Horticulturae, 2012, 134, 93-99.	1.7	39
85	Yield and composition of pectin extracted from Tunisian pomegranate peel. International Journal of Biological Macromolecules, 2016, 93, 186-194.	3.6	39
86	Detection of phenolic oxidation products in cider apple juice by high-performance liquid chromatography electrospray ionisation ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 939-943.	0.7	38
87	Studies on apple protopectin. IV: Apple xyloglucans and influence of pectin extraction treatments on their solubility. Carbohydrate Polymers, 1991, 15, 387-403.	5.1	37
88	Apple-fruit xyloglucans: a comparative study of enzyme digests of whole cell walls and of alkali-extracted xyloglucans. Carbohydrate Research, 1992, 232, 303-320.	1.1	37
89	Alkaline extraction of xyloglucan from depectinised apple pomace: optimisation and characterisation. Carbohydrate Polymers, 1995, 28, 209-216.	5.1	36
90	Effect of processing on rheological, structural and sensory properties of apple puree. Procedia Food Science, 2011, 1, 513-520.	0.6	36

#	Article	IF	CITATIONS
91	Hydrosols of orange blossom (Citrus aurantium), and rose flower (Rosa damascena and Rosa) Tj ETQq1 1 0.784	314 rgBT 2.9	Overlock 10
92	2015, 76, 576-586. Characterisation of residual fibres from fermentation of pea and apple fibres by human faecal bacteria. Journal of the Science of Food and Agriculture, 1995, 68, 521-529.	1.7	35
93	Improvement of the binding capacity of metal cations by sugar-beet pulp. 1. Impact of cross-linking treatments on composition, hydration and binding properties. Carbohydrate Polymers, 1998, 35, 29-37.	5.1	35
94	Enzymatic synthesis and physicochemical characterisation of phloridzin oxidation products (POP), a new water-soluble yellow dye deriving from apple. Innovative Food Science and Emerging Technologies, 2007, 8, 443-450.	2.7	35
95	Apricot cell wall composition: Relation with the intra-fruit texture heterogeneity and impact of cooking. Food Chemistry, 2012, 133, 45-54.	4.2	34
96	Preharvest UV-C radiation influences physiological, biochemical, and transcriptional changes in strawberry cv. Camarosa. Plant Physiology and Biochemistry, 2016, 108, 391-399.	2.8	34
97	A review through recovery, purification and identification of genipin. Phytochemistry Reviews, 2016, 15, 37-49.	3.1	34
98	Soil Photosynthetic Microbial Communities Mediate Aggregate Stability: Influence of Cropping Systems and Herbicide Use in an Agricultural Soil. Frontiers in Microbiology, 2019, 10, 1319.	1.5	34
99	Influence of ionic strength, pH and dielectric constant on hydration properties of native and modified fibres from sugar-beet and wheat bran. Industrial Crops and Products, 1994, 3, 75-84.	2.5	33
100	Mechanisms of folate losses during processing: Diffusion vs. heat degradation. Food Chemistry, 2014, 157, 439-447.	4.2	33
101	Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis. BMC Genomics, 2016, 17, 147.	1.2	33
102	Trends and challenges on fruit and vegetable processing: Insights into sustainable, traceable, precise, healthy, intelligent, personalized and local innovative food products. Trends in Food Science and Technology, 2022, 125, 12-25.	7.8	33
103	Characterisation of the extractable pectins and hemicelluloses of the cell wall of glasswort, Salicornia ramosissima. Carbohydrate Polymers, 1993, 22, 239-245.	5.1	32
104	Characterization of Plum Procyanidins by Thiolytic Depolymerization. Journal of Agricultural and Food Chemistry, 2008, 56, 5188-5196.	2.4	32
105	Co-products of black-currant and apple juice production: Hydration properties and polysaccharide composition. LWT - Food Science and Technology, 2010, 43, 173-180.	2.5	32
106	Studies on apple protopectin. III: Characterization of the material extracted by pure polysaccharidases from apple cell walls. Carbohydrate Polymers, 1991, 15, 13-32.	5.1	31
107	Exploring interactions between pectins and procyanidins: Structure-function relationships. Food Hydrocolloids, 2021, 113, 106498.	5.6	31
108	Dietary fiber and cell wall polysaccharides from plum (Prunus domestica L.) fruit, juice and pomace: Comparison of composition and functional properties for three plum varieties. Food Research International, 2013, 54, 1787-1794.	2.9	30

#	Article	IF	CITATIONS
109	Impact of canning and storage on apricot carotenoids and polyphenols. Food Chemistry, 2018, 240, 615-625.	4.2	30
110	End-products of enzymic saccharification of beet pulp, with a special attention to feruloylated oligosaccharides. Carbohydrate Polymers, 1997, 32, 283-292.	5.1	29
111	Home conservation strategies for tomato (Solanum lycopersicum): Storage temperature vs. duration – Is there a compromise for better aroma preservation?. Food Chemistry, 2013, 139, 825-836.	4.2	29
112	Nutritional Compounds in Figs from the Southern Mediterranean Region. International Journal of Food Properties, 2014, 17, 491-499.	1.3	29
113	Preharvest UV-C radiation impacts strawberry metabolite content and volatile organic compound production. LWT - Food Science and Technology, 2017, 85, 390-393.	2.5	28
114	A Comparative Study of Pectin Extracted from Passion Fruit Rind Flours. Journal of Polymers and the Environment, 2010, 18, 593-599.	2.4	26
115	Determination of the Composition in Sugars and Organic Acids in Peach Using Mid Infrared Spectroscopy: Comparison of Prediction Results According to Data Sets and Different Reference Methods. Analytical Chemistry, 2013, 85, 11312-11318.	3.2	26
116	Comparison of microcalorimetry and haze formation to quantify the association of B-type procyanidins to poly-l-proline and bovine serum albumin. LWT - Food Science and Technology, 2015, 63, 376-382.	2.5	26
117	Impact of air-drying on polyphenol extractability from apple pomace. Food Chemistry, 2019, 296, 142-149.	4.2	26
118	Studies on apple protopectin VI: extraction of pectins from apple cell walls with rhamnogalacturonase. Carbohydrate Polymers, 1993, 22, 203-210.	5.1	25
119	Improvement of the binding capacity of metal cations by sugar-beet pulp. 2. Binding of divalent metal cations by modified sugar-beet pulp. Carbohydrate Polymers, 1998, 35, 239-247.	5.1	25
120	An innovative process for extraction of fruit juice using microwave heating. LWT - Food Science and Technology, 2011, 44, 1035-1041.	2.5	25
121	Pink Discoloration of Canned Pears: Role of Procyanidin Chemical Depolymerization and Procyanidin/Cell Wall Interactions. Journal of Agricultural and Food Chemistry, 2013, 61, 6679-6692.	2.4	25
122	Environmental friendly cold-mechanical/sonic enzymatic assisted extraction of genipin from genipap (Genipa americana). Ultrasonics Sonochemistry, 2014, 21, 43-49.	3.8	25
123	An overview of carotenoid extractions using green solvents assisted by Z-isomerization. Trends in Food Science and Technology, 2022, 123, 145-160.	7.8	25
124	Identification of oleuropein oligomers in olive pulp and pomace. Journal of the Science of Food and Agriculture, 2006, 86, 1495-1502.	1.7	24
125	Advances and perspectives of Pachyrhizus spp. in food science and biotechnology. Trends in Food Science and Technology, 2013, 29, 44-54.	7.8	24
126	Inter- and intra-tree variability in quality of figs. Influence of altitude, leaf area and fruit position in the canopy. Scientia Horticulturae, 2013, 162, 49-54.	1.7	24

#	Article	IF	Citations
127	A method using near infrared hyperspectral imaging to highlight the internal quality of apple fruit slices. Postharvest Biology and Technology, 2021, 175, 111497.	2.9	24
128	Structure and properties of the polysaccharides from pea hulls $\hat{a} \in \mathbb{N}$. Modification of the composition and physico-chemical properties of pea hulls by chemical extraction of the constituent polysaccharides. Carbohydrate Polymers, 1995, 26, 121-128.	5.1	23
129	Size-exclusion chromatography of procyanidins: Comparison between apple and grape procyanidins and application to the characterization of fractions of high degrees of polymerization. Analytica Chimica Acta, 2006, 563, 33-43.	2.6	23
130	Thermal degradation of folates under varying oxygen conditions. Food Chemistry, 2014, 165, 85-91.	4.2	23
131	Volatile changes in cv. Verdeal Transmontana olive oil: From the drupe to the table, including storage. Food Research International, 2018, 106, 374-382.	2.9	23
132	Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4841-4880.	5.9	23
133	Pectic Methyl and Nonmethyl Esters in Potato Cell Walls. Journal of Agricultural and Food Chemistry, 2002, 50, 342-346.	2.4	22
134	Characterisation by liquid chromatography coupled to electrospray ionisation ion trap mass spectrometry of phloroglucinol and 4-methylcatechol oxidation products to study the reactivity of epicatechin in an apple juice model system. Journal of Chromatography A, 2008, 1179, 168-181.	1.8	22
135	Cultivar and Year Rather than Agricultural Practices Affect Primary and Secondary Metabolites in Apple Fruit. PLoS ONE, 2015, 10, e0141916.	1.1	22
136	Heating tomato puree in the presence of lipids and onion: The impact of onion on lycopene isomerization. Food Chemistry, 2019, 296, 9-16.	4.2	22
137	Physicochemical parameters that influence carotenoids bioaccessibility from a tomato juice. Food Chemistry, 2013, 136, 435-441.	4.2	21
138	Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT - Food Science and Technology, 2017, 85, 380-384.	2.5	21
139	The significance of structural properties for the development of innovative apple puree textures. LWT - Food Science and Technology, 2012, 49, 221-228.	2.5	20
140	Comparison between microwave hydrodiffusion and pressing for plum juice extraction. LWT - Food Science and Technology, 2012, 49, 229-237.	2.5	20
141	Nanostructured gadolinium-doped ceria microsphere synthesis from ion exchange resin: Multi-scale in-situ studies of solid solution formation. Journal of Solid State Chemistry, 2014, 218, 155-163.	1.4	20
142	Influence of Prefermentary Clarification on the Composition of Apple Musts. Journal of Agricultural and Food Chemistry, 2007, 55, 5118-5122.	2.4	19
143	Texture variation in apricot: Intra-fruit heterogeneity, impact of thinning and relation with the texture after cooking. Food Research International, 2011, 44, 46-53.	2.9	19
144	Caprification modifies polyphenols but not cell wall concentrations in ripe figs. Scientia Horticulturae, 2013, 160, 115-122.	1.7	19

#	Article	IF	CITATIONS
145	Effects of the apple matrix on the postprandial bioavailability of flavan-3-ols and nutrigenomic response of apple polyphenols in minipigs challenged with a high fat meal. Food and Function, 2020, 11, 5077-5090.	2.1	19
146	Comparison between enzymatically and chemically extracted pectins from apple cell walls. Animal Feed Science and Technology, 1991, 32, 69-75.	1.1	18
147	Pear ripeness and tissue type impact procyanidin-cell wall interactions. Food Chemistry, 2019, 275, 754-762.	4.2	18
148	Enzymatic degradation of cell walls of apples and characterization of solubilized products. International Journal of Biological Macromolecules, 1995, 17, 337-340.	3.6	17
149	Cell wall polysaccharides of bush butter (Dacryodes edulis (G Don) HJ Lam) fruit pulp and their evolution during ripening. Journal of the Science of Food and Agriculture, 2001, 81, 773-780.	1.7	17
150	Visible, near- and mid-infrared spectroscopy coupled with an innovative chemometric strategy to control apple puree quality. Food Control, 2021, 120, 107546.	2.8	17
151	A conformational study of the xyloglucan oligomer, XXXG, by NMR spectroscopy and molecular modeling. Biopolymers, 2000, 54, 11-26.	1.2	16
152	RHEOLOGICAL AND MACROMOLECULAR QUALITY OF PECTIN EXTRACTED WITH NITRIC ACID FROM PASSION FRUIT RIND. Journal of Food Process Engineering, 2012, 35, 800-809.	1.5	15
153	Leaching of polyphenols from apple parenchyma tissue as influenced by thermal treatments. Journal of Food Engineering, 2015, 166, 237-246.	2.7	15
154	Characterization of Cell Wall Polysaccharides of Cherry (Prunus cerasus var. Schattenmorelle) Fruit and Pomace. Plant Foods for Human Nutrition, 2009, 64, 279-285.	1.4	14
155	Variability of free and glycosylated volatiles from strawberries destined for the fresh market and for processing, assessed using direct enzymatic hydrolysis. LWT - Food Science and Technology, 2018, 98, 187-196.	2.5	14
156	Microwave heating of tomato puree in the presence of onion and EVOO: The effect on lycopene isomerization and transfer into oil. LWT - Food Science and Technology, 2019, 113, 108284.	2.5	14
157	Pectin modifications in raw fruits alter texture of plant cell dispersions. Food Hydrocolloids, 2020, 107, 105962.	5.6	14
158	Fresh, freeze-dried or cell wall samples: Which is the most appropriate to determine chemical, structural and rheological variations during apple processing using ATR-FTIR spectroscopy?. Food Chemistry, 2020, 330, 127357.	4.2	14
159	Modification of apple, beet and kiwifruit cell walls by boiling in acid conditions: Common and specific responses. Food Hydrocolloids, 2021, 112, 106266.	5.6	14
160	Immobilization of flavan-3-ols onto sensor chips to study their interactions with proteins and pectins by SPR. Applied Surface Science, 2016, 371, 512-518.	3.1	13
161	Oxygen availability in model solutions and pur \tilde{A} ©es during heat treatment and the impact on vitamin C degradation. LWT - Food Science and Technology, 2017, 85, 493-499.	2.5	12
162	Influence of partial pressure of oxygen on ascorbic acid degradation at canning temperature. Innovative Food Science and Emerging Technologies, 2018, 49, 215-221.	2.7	12

#	Article	IF	Citations
163	Exopolysaccharides in the rhizosphere: A comparative study of extraction methods. Application to their quantification in Mediterranean soils. Soil Biology and Biochemistry, 2020, 149, 107961.	4.2	12
164	Traditional green leafy vegetables as underutilised sources of micronutrients in a rural farming community in south-west Nigeria I: estimation of vitamin C, carotenoids and mineral contents. South African Journal of Clinical Nutrition, 2021, 34, 40-45.	0.3	12
165	Cell-wall polysaccharides in growing poplar bark tissue. International Journal of Biological Macromolecules, 1995, 17, 341-344.	3.6	11
166	Towards the Use of Biochemical Indicators in the Raw Fruit for Improved Texture of Pasteurized Apricots. Food and Bioprocess Technology, 2017, 10, 662-673.	2.6	11
167	Changes in cell wall neutral sugar composition related to pectinolytic enzyme activities and intra-flesh textural property during ripening of ten apricot clones. Food Chemistry, 2021, 339, 128096.	4.2	11
168	Rheological properties of pomegranate peel suspensions: The effect of fibrous material and low-methoxyl pectin at acidic pH. Food Hydrocolloids, 2017, 62, 174-181.	5.6	10
169	Extraction and composition of pectins and hemicelluloses of cell walls of sugar beet roots grown in Morocco. International Journal of Food Science and Technology, 2001, 36, 35-46.	1.3	10
170	Pectin from Passion Fruit Fiber and Its Modification by Pectinmethylesterase. Preventive Nutrition and Food Science, 2010, 15, 57-66.	0.7	10
171	Some preliminary results on the action of rhamnogalacturonase on rhamnogalacturonan oligosaccharides from beet pulp. International Journal of Biological Macromolecules, 1995, 17, 333-336.	3.6	9
172	Optimization of the liquefaction and saccharification of structural polysaccharides of jicama (Pachyrhizus erosus L.) tissue by enzymatic pulping. LWT - Food Science and Technology, 2012, 46, 232-238.	2.5	9
173	Enzymatic liquefaction of jicama (Pachyrhizus erosus) tuberous roots and characterization of the cell walls after processing. LWT - Food Science and Technology, 2012, 49, 257-262.	2.5	9
174	Different compounds are extracted with different time courses from fruits during microwave hydrodiffusion: Examples and possible causes. Food Chemistry, 2014, 154, 179-186.	4.2	9
175	Ultrafiltration for genipin recovery technologies after ultrasonic treatment of genipap fruit. Biocatalysis and Agricultural Biotechnology, 2015, 4, 11-16.	1.5	9
176	Good practices for data presentation in LWT-Food Science and Technology. LWT - Food Science and Technology, 2021, 139, 110578.	2.5	9
177	Comparison of near-infrared, mid-infrared, Raman spectroscopy and near-infrared hyperspectral imaging to determine chemical, structural and rheological properties of apple purees. Journal of Food Engineering, 2022, 323, 111002.	2.7	9
178	Relationship between pollination and cell wall properties in common fig fruit. Phytochemistry, 2014, 98, 78-84.	1.4	8
179	Impact of cooking on apricot texture as a function of cultivar and maturity. LWT - Food Science and Technology, 2017, 85, 385-389.	2.5	8
180	Determination of reaction orders for ascorbic acid degradation during sterilization using a new experimental device: The thermoresistometer MastiaA®. LWT - Food Science and Technology, 2017, 85, 487-492.	2.5	8

#	Article	IF	CITATIONS
181	The Glucose-Fructose ratio of wild Tunisian grapes. Cogent Food and Agriculture, 2017, 3, 1374156.	0.6	8
182	Interactions between heterogeneous cell walls and two procyanidins: Insights from the effects of chemical composition and physical structure. Food Hydrocolloids, 2021, 121, 107018.	5.6	8
183	Experimental and theoretical investigation on interactions between xylose-containing hemicelluloses and procyanidins. Carbohydrate Polymers, 2022, 281, 119086.	5.1	8
184	Flavan-3-ols and procyanidins in grape seeds: biodiversity and relationships among wild and cultivated vines. Euphytica, $2017, 213, 1$.	0.6	7
185	Apple puree's texture is independent from fruit firmness. LWT - Food Science and Technology, 2021, 145, 111324.	2.5	7
186	Fruit variability impacts puree quality: Assessment on individually processed apples using the visible and near infrared spectroscopy. Food Chemistry, 2022, 390, 133088.	4.2	7
187	Kinetics of Apple Polyphenol Diffusion in Solutions with Different Osmotic Strengths. Journal of Agricultural and Food Chemistry, 2014, 62, 9841-9847.	2.4	6
188	Effect of storage conditions on †Deglet Nour†date palm fruit organoleptic and nutritional quality. LWT - Food Science and Technology, 2021, 137, 110343.	2.5	6
189	Pectin degradation accounts for apple tissue fragmentation during thermomechanical-mediated puree production. Food Hydrocolloids, 2021, 120, 106885.	5.6	6
190	Characterisation of RG degradation products of new RGases using RC-rhamnohydrolase and RG-galacturonohydrolase. Progress in Biotechnology, 1996, , 263-274.	0.2	5
191	Stability of 5-methyltetrahydrofolate in fortified apple and carrot purées. LWT - Food Science and Technology, 2019, 107, 158-163.	2.5	5
192	Impact of onions in tomato-based sauces on isomerization and bioaccessibility of colorless carotenes: phytoene and phytofluene. Food and Function, 2020, 11, 5122-5132.	2.1	5
193	Evolution of cherries texture in brine: Impact of harvest conditions during long-time storage. LWT - Food Science and Technology, 2017, 75, 243-250.	2.5	4
194	Mid-infrared technique to forecast cooked puree properties from raw apples: A potential strategy towards sustainability and precision processing. Food Chemistry, 2021, 355, 129636.	4.2	4
195	Volatile compounds in ripe fig receptacle are influenced by environment in the vicinity of the fruit. Fruits, 2017, 72, 230-237.	0.3	4
196	Difficultés expérimentales de l'étude des macromolécules pectiques. Bulletin De La Société Botanic De France Actualités Botaniques, 1991, 138, 319-337.	o.o ^{up}	3
197	Characterization of hemicelluloses of sugar beet roots grown in Morocco. International Journal of Food Science and Technology, 2004, 39, 303-309.	1.3	3
198	Use of mid-infrared spectroscopy to monitor shelf-life of ready-made meals. LWT - Food Science and Technology, 2017, 85, 474-478.	2.5	3

#	Article	IF	CITATIONS
199	Iron-induced peroxidation of trilinolein nano-emulsions under model gastric conditions and its inhibition by dietary phenolic antioxidants. Food and Function, 2020, 11, 9144-9156.	2.1	3
200	Multiscale NMR analysis of the degradation of apple structure due to thermal treatment. Journal of Food Engineering, 2021, 294, 110413.	2.7	3
201	Factors affecting postharvest preservation of safou (<i>Dacryodes edulis</i> (G. Don) H.J. Lam) fruits. Forests Trees and Livelihoods, 2012, 21, 44-55.	0.5	2
202	A mechanistic and probabilistic model estimating micronutrient losses in industrial food processing: Vitamin C and canned green beans, a case-study. LWT - Food Science and Technology, 2016, 69, 236-243.	2.5	2
203	Interactions Between Dietary Antioxidants and Plant Cell Walls. , 2019, , 633-643.		2
204	Traditional green leafy vegetables as underutilised sources of micronutrients in a rural farming community in south-west Nigeria II: consumption pattern and potential contribution to micronutrient requirements. South African Journal of Clinical Nutrition, 2021, 34, 46-51.	0.3	2
205	Sugar Beet Fiber., 2009, , .		1
206	Two micro-mechanical techniques for studying the enzymatic maceration kinetics of apple parenchyma. Journal of Food Engineering, 2014, 122, 1-7.	2.7	1
207	Multiscale Localization of Procyanidins in Ripe and Overripe Perry Pears by Light and Transmission Electron Microscopy. Journal of Agricultural and Food Chemistry, 2020, 68, 8900-8906.	2.4	1
208	Impact of three warming-up methods on the stability of vitamin C and 5-methyltetrahydrofolate supplemented to apple and carrot purée. LWT - Food Science and Technology, 2017, 84, 668-673.	2.5	0