Gerhard Gompper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6656204/publications.pdf Version: 2024-02-01

		9786	17592
370	19,742	73	121
papers	citations	h-index	g-index
202	202	202	10529
592	392	592	10330
all docs	docs citations	times ranked	citing authors

CERHARD COMPRED

#	Article	IF	CITATIONS
1	Simulating wet active polymers by multiparticle collision dynamics. Physical Review E, 2022, 105, 015310.	2.1	3
2	Erythrocyte Sedimentation: Collapse of a High-Volume-Fraction Soft-Particle Gel. Physical Review Letters, 2022, 128, 088101.	7.8	12
3	Erythrocyte sedimentation: Effect of aggregation energy on gel structure during collapse. Physical Review E, 2022, 105, 024610.	2.1	11
4	Emergence of active turbulence in microswimmer suspensions due to active hydrodynamic stress and volume exclusion. Communications Physics, 2022, 5, .	5.3	27
5	Generic self-stabilization mechanism for biomolecular adhesions under load. Nature Communications, 2022, 13, 2197.	12.8	6
6	Alignment and propulsion of squirmer pusher–puller dumbbells. Journal of Chemical Physics, 2022, 156, .	3.0	3
7	Dynamics of active polar ring polymers. Physical Review E, 2022, 105, .	2.1	11
8	Effect of cytosol viscosity on the flow behavior of red blood cell suspensions in microvessels. Microcirculation, 2021, 28, e12668.	1.8	12
9	Self-Propelled Vesicles Driven by Internal Active Filaments. Biophysical Journal, 2021, 120, 237a.	0.5	0
10	A minimal model for structure, dynamics, and tension of monolayered cell colonies. Communications Physics, 2021, 4, .	5.3	15
11	The role of thickness inhomogeneities in hierarchical cortical folding. NeuroImage, 2021, 231, 117779.	4.2	6
12	Importance of Viscosity Contrast for the Motion of Erythrocytes in Microcapillaries. Frontiers in Physics, 2021, 9, .	2.1	11
13	Wall-anchored semiflexible polymer under large amplitude oscillatory shear flow. Journal of Chemical Physics, 2021, 154, 224901.	3.0	4
14	Multi-ciliated microswimmers–metachronal coordination and helical swimming. European Physical Journal E, 2021, 44, 76.	1.6	6
15	Effect of malaria parasite shape on its alignment at erythrocyte membrane. ELife, 2021, 10, .	6.0	3
16	Reconstruction of the three-dimensional beat pattern underlying swimming behaviors of sperm. European Physical Journal E, 2021, 44, 87.	1.6	23
17	Active bath-induced localization and collapse of passive semiflexible polymers. Journal of Chemical Physics, 2021, 155, 044902.	3.0	11
18	Editorial: Motile active matter. European Physical Journal E, 2021, 44, 103.	1.6	2

#	Article	IF	CITATIONS
19	Tumbling and Vorticity Drift of Flexible Helicoidal Polymers in Shear Flow. Macromolecules, 2021, 54, 812-823.	4.8	4
20	The steering gaits of sperm. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190149.	4.0	24
21	Active particles induce large shape deformations in giant lipid vesicles. Nature, 2020, 586, 52-56.	27.8	116
22	Chiral-filament self-assembly on curved manifolds. Soft Matter, 2020, 16, 10548-10557.	2.7	3
23	DNA Self-Assembly Mediated by Programmable Soft-Patchy Interactions. ACS Nano, 2020, 14, 13524-13535.	14.6	6
24	Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion. Soft Matter, 2020, 16, 10676-10687.	2.7	16
25	Filamentous active matter: Band formation, bending, buckling, and defects. Science Advances, 2020, 6, eaaw9975.	10.3	24
26	The physics of active polymers and filaments. Journal of Chemical Physics, 2020, 153, 040901.	3.0	86
27	Deterministic Lateral Displacement: Challenges and Perspectives. ACS Nano, 2020, 14, 10784-10795.	14.6	97
28	Buckling transitions and soft-phase invasion of two-component icosahedral shells. Physical Review E, 2020, 102, 062104.	2.1	4
29	Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study. Soft Matter, 2020, 16, 4866-4875.	2.7	15
30	Hydrodynamics of polymers in an active bath. Physical Review E, 2020, 101, 052612.	2.1	19
31	The 2020 motile active matter roadmap. Journal of Physics Condensed Matter, 2020, 32, 193001.	1.8	242
32	Computational models for activeÂmatter. Nature Reviews Physics, 2020, 2, 181-199.	26.6	192
33	Tissue evolution: mechanical interplay of adhesion, pressure, and heterogeneity. New Journal of Physics, 2020, 22, 033048.	2.9	7
34	Dissipative particle dynamics with energy conservation: Isoenergetic integration and transport properties. Journal of Chemical Physics, 2020, 152, 064112.	3.0	3
35	Enhanced Rotational Motion of Spherical Squirmer in Polymer Solutions. Physical Review Letters, 2020, 124, 068001.	7.8	47
36	Osmotic Concentration-Controlled Particle Uptake and Wrapping-Induced Lysis of Cells and Vesicles. Nano Letters, 2020, 20, 1662-1668.	9.1	14

#	Article	IF	CITATIONS
37	Reconfigurable structure and tunable transport in synchronized active spinner materials. Science Advances, 2020, 6, eaaz8535.	10.3	51
38	A Bayesian traction force microscopy method with automated denoising in a user-friendly software package. Computer Physics Communications, 2020, 256, 107313.	7.5	14
39	Rheotaxis of spheroidal squirmers in microchannel flow: Interplay of shape, hydrodynamics, active stress, and thermal fluctuations. Physical Review Research, 2020, 2, .	3.6	16
40	Stability of heterogeneous parallel-bond adhesion clusters under load. Physical Review Research, 2020, 2, .	3.6	3
41	Stochastic bond dynamics facilitates alignment of malaria parasite at erythrocyte membrane upon invasion. ELife, 2020, 9, .	6.0	7
42	Multiscale Modeling of Malaria-Infected Red Blood Cells. , 2020, , 2625-2648.		1
43	Instability and fingering of interfaces in growing tissue. New Journal of Physics, 2020, 22, 083005.	2.9	10
44	Hydrodynamics in Motile Active Matter. , 2020, , 1471-1491.		1
45	Microfluidic Particle Sorting in Concentrated Erythrocyte Suspensions. Physical Review Applied, 2019, 12, .	3.8	13
46	Substrate-rigidity dependent migration of an idealized twitching bacterium. Soft Matter, 2019, 15, 6224-6236.	2.7	8
47	Deformation and dynamics of erythrocytes govern their traversal through microfluidic devices with a deterministic lateral displacement architecture. Biomicrofluidics, 2019, 13, 044106.	2.4	12
48	High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability. Biophysical Journal, 2019, 117, 14-24.	0.5	46
49	Mechanics of tissue competition: interfaces stabilize coexistence. New Journal of Physics, 2019, 21, 063017.	2.9	12
50	Importance of Erythrocyte Deformability for the Alignment of Malaria Parasite upon Invasion. Biophysical Journal, 2019, 117, 1202-1214.	0.5	21
51	Sperm motility in modulated microchannels. New Journal of Physics, 2019, 21, 013016.	2.9	35
52	Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells. Scientific Reports, 2019, 9, 539.	3.3	48
53	State diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping. Soft Matter, 2019, 15, 5511-5520.	2.7	8
54	Local stress and pressure in an inhomogeneous system of spherical active Brownian particles. Scientific Reports, 2019, 9, 6608.	3.3	30

#	Article	IF	CITATIONS
55	High Troughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability. Biophysical Journal, 2019, 116, 123a-124a.	0.5	2
56	Active Brownian filaments with hydrodynamic interactions: conformations and dynamics. Soft Matter, 2019, 15, 3957-3969.	2.7	38
57	Active Brownian ring polymers. Journal of Chemical Physics, 2019, 150, 064913.	3.0	33
58	Hydrodynamic correlations of viscoelastic fluids by multiparticle collision dynamics simulations. Journal of Chemical Physics, 2019, 151, 194110.	3.0	2
59	Vesicles with internal active filaments: self-organized propulsion controls shape, motility, and dynamical response. New Journal of Physics, 2019, 21, 123024.	2.9	24
60	Sharp-edged geometric obstacles in microfluidics promote deformability-based sorting of cells. Physical Review Fluids, 2019, 4, .	2.5	27
61	Chronology of motor-mediated microtubule streaming. ELife, 2019, 8, .	6.0	8
62	Simulating membranes, vesicles, and cells. , 2019, , 169-193.		2
63	From Modeling Nanoparticle–Membrane Interactions toward Nanotoxicology. , 2019, , 217-243.		0
64	Steady state sedimentation of ultrasoft colloids. Journal of Chemical Physics, 2018, 148, 084901.	3.0	18
65	Hydrodynamics of binary-fluid mixtures —An augmented Multiparticle Collison Dynamics approach. Europhysics Letters, 2018, 121, 24003.	2.0	9
66	Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation. Journal of the Royal Society Interface, 2018, 15, 20170713.	3.4	21
67	Confined active Brownian particles: theoretical description of propulsion-induced accumulation. New Journal of Physics, 2018, 20, 015001.	2.9	111
68	Flow-induced adhesion of shear-activated polymers to a substrate. Journal of Physics Condensed Matter, 2018, 30, 064001.	1.8	4
69	Nanoparticle wrapping at small non-spherical vesicles: curvatures at play. Nanoscale, 2018, 10, 6445-6458.	5.6	21
70	Clustering and dynamics of particles in dispersions with competing interactions: theory and simulation. Soft Matter, 2018, 14, 92-103.	2.7	26
71	Clustering of microswimmers: interplay of shape and hydrodynamics. Soft Matter, 2018, 14, 8590-8603.	2.7	105

72 Interaction of Particles and Pathogens with Biological Membranes. , 2018, , 471-498.

2

#	Article	IF	CITATIONS
73	Weak Shape Anisotropy Leads to a Nonmonotonic Contribution to Crowding, Impacting Protein Dynamics under Physiologically Relevant Conditions. Journal of Physical Chemistry B, 2018, 122, 12396-12402.	2.6	15
74	Active Brownian Filamentous Polymers under Shear Flow. Polymers, 2018, 10, 837.	4.5	22
75	Flow-Induced Transitions of Red Blood Cell Shapes under Shear. Physical Review Letters, 2018, 121, 118103.	7.8	93
76	Collective dynamics of self-propelled semiflexible filaments. Soft Matter, 2018, 14, 4483-4494.	2.7	63
77	Hydrodynamics in Motile Active Matter. , 2018, , 1-21.		4
78	Effect of spectrin network elasticity on the shapes of erythrocyte doublets. Soft Matter, 2018, 14, 6278-6289.	2.7	26
79	Nanoparticle-Decorated Erythrocytes Reveal That Particle Size Controls the Extent of Adsorption, Cell Shape, and Cell Deformability. ACS Applied Nano Materials, 2018, 1, 3785-3799.	5.0	18
80	Collective behavior of self-propelled rods with quorum sensing. Physical Review E, 2018, 98, 022605.	2.1	16
81	Multiscale Modeling of Malaria-Infected Red Blood Cells. , 2018, , 1-24.		2
82	Internal dynamics of semiflexible polymers with active noise. Journal of Chemical Physics, 2017, 146, 154903.	3.0	74
83	Margination and stretching of von Willebrand factor in the blood stream enable adhesion. Scientific Reports, 2017, 7, 14278.	3.3	42
84	Active Polymers — Emergent Conformational and Dynamical Properties: A Brief Review. Journal of the Physical Society of Japan, 2017, 86, 101014.	1.6	79
85	Enhanced Dynamics of Confined Cytoskeletal Filaments Driven by Asymmetric Motors. Biophysical Journal, 2017, 113, 1121-1132.	0.5	21
86	Modeling the cleavage of von Willebrand factor by ADAMTS13 protease in shear flow. Medical Engineering and Physics, 2017, 48, 14-22.	1.7	13
87	Complex self-propelled rings: a minimal model for cell motility. Soft Matter, 2017, 13, 5865-5876.	2.7	20
88	Conformational and dynamical properties of semiflexible polymers in the presence of active noise. AIP Conference Proceedings, 2017, , .	0.4	11
89	Active turbulence in a gas of self-assembled spinners. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12870-12875.	7.1	118
90	Human sperm steer with second harmonics of the flagellar beat. Nature Communications, 2017, 8, 1415.	12.8	79

#	Article	IF	CITATIONS
91	Nano- and microparticles at fluid and biological interfaces. Journal of Physics Condensed Matter, 2017, 29, 373003.	1.8	64
92	Spatial correlations of hydrodynamic fluctuations in simple fluids under shear flow: A mesoscale simulation study. Physical Review E, 2017, 96, 062617.	2.1	5
93	Static and dynamic light scattering by red blood cells: A numerical study. PLoS ONE, 2017, 12, e0176799.	2.5	14
94	Conformational Properties of Active Semiflexible Polymers. Polymers, 2016, 8, 304.	4.5	95
95	Modeling microcirculatory blood flow: current state and future perspectives. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 157-168.	6.6	35
96	Interface dynamics of competing tissues. New Journal of Physics, 2016, 18, 083020.	2.9	24
97	Propagating interfaces in mixtures of active and passive Brownian particles. New Journal of Physics, 2016, 18, 123030.	2.9	61
98	Dramatic influence of patchy attractions on short-time protein diffusion under crowded conditions. Science Advances, 2016, 2, e1601432.	10.3	55
99	Dynamics of self-propelled filaments pushing a load. Soft Matter, 2016, 12, 8495-8505.	2.7	57
100	Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit. Soft Matter, 2016, 12, 7372-7385.	2.7	72
101	From local to hydrodynamic friction in Brownian motion: A multiparticle collision dynamics simulation study. Physical Review E, 2016, 93, 032604.	2.1	23
102	Microswimmers – From Single Particle Motion to Collective Behavior. European Physical Journal: Special Topics, 2016, 225, 2061-2064.	2.6	17
103	Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13289-13294.	7.1	179
104	Microswimmers near surfaces. European Physical Journal: Special Topics, 2016, 225, 2333-2352.	2.6	64
105	Sorting cells by their dynamical properties. Scientific Reports, 2016, 6, 34375.	3.3	58
106	Equilibrium physics breakdown reveals the active nature of red blood cell flickering. Nature Physics, 2016, 12, 513-519.	16.7	231
107	Understanding particle margination in blood flow – A step toward optimized drug delivery systems. Medical Engineering and Physics, 2016, 38, 2-10.	1.7	67
108	Giant adsorption of microswimmers: Duality of shape asymmetry and wall curvature. Physical Review E, 2015, 91, 050302.	2.1	45

#	Article	IF	CITATIONS
109	Effect of angular momentum conservation on hydrodynamic simulations of colloids. Physical Review E, 2015, 92, 013301.	2.1	17
110	Hydrodynamic correlations in shear flow: Multiparticle-collision-dynamics simulation study. Physical Review E, 2015, 92, 053002.	2.1	8
111	Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow. Journal of Chemical Physics, 2015, 143, 243117.	3.0	12
112	Preface: Special Topic on Coarse Graining of Macromolecules, Biopolymers, and Membranes. Journal of Chemical Physics, 2015, 143, 242901.	3.0	2
113	Physical Sensing of Surface Properties by Microswimmers – Directing Bacterial Motion via Wall Slip. Scientific Reports, 2015, 5, 9586.	3.3	77
114	Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes. Journal of Chemical Physics, 2015, 143, 243145.	3.0	67
115	Effect of fluid–colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids. Soft Matter, 2015, 11, 6703-6715.	2.7	20
116	Conformations, hydrodynamic interactions, and instabilities of sedimenting semiflexible filaments. Soft Matter, 2015, 11, 7337-7344.	2.7	20
117	Collective waves in dense and confined microfluidic droplet arrays. Soft Matter, 2015, 11, 5850-5861.	2.7	17
118	Thermostat for nonequilibrium multiparticle-collision-dynamics simulations. Physical Review E, 2015, 91, 013310.	2.1	41
119	Microvascular blood flow resistance: Role of red blood cell migration and dispersion. Microvascular Research, 2015, 99, 57-66.	2.5	90
120	Rheological Properties of Sheared Vesicle and Cell Suspensions. Procedia IUTAM, 2015, 16, 3-11.	1.2	3
121	Virial pressure in systems of spherical active Brownian particles. Soft Matter, 2015, 11, 6680-6691.	2.7	123
122	Physics of microswimmers—single particle motion and collective behavior: a review. Reports on Progress in Physics, 2015, 78, 056601.	20.1	1,029
123	Self-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamics. Soft Matter, 2015, 11, 7181-7190.	2.7	117
124	Modelling the mechanics and hydrodynamics of swimming E. coli. Soft Matter, 2015, 11, 7867-7876.	2.7	94
125	Run-and-tumble dynamics of self-propelled particles in confinement. Europhysics Letters, 2015, 109, 58003.	2.0	97
126	Smoothed dissipative particle dynamics with angular momentum conservation. Journal of Computational Physics, 2015, 281, 301-315.	3.8	64

#	Article	IF	CITATIONS
127	Motility-sorting of self-propelled particles in microchannels. Europhysics Letters, 2014, 107, 36003.	2.0	57
128	HYDRODYNAMICS MEDIATED COLLECTIVE MOTIONS IN POPULATIONS OF MICRODROPLETS. World Scientific Lecture Notes in Complex Systems, 2014, , 125-148.	0.1	2
129	Mode coupling of phonons in a dense one-dimensional microfluidic crystal. New Journal of Physics, 2014, 16, 063029.	2.9	15
130	Dynamical and rheological properties of soft colloid suspensions. Current Opinion in Colloid and Interface Science, 2014, 19, 594-610.	7.4	68
131	Hydrodynamics of discrete-particle models of spherical colloids: A multiparticle collision dynamics simulation study. Physical Review E, 2014, 90, 033314.	2.1	41
132	Nonequilibrium structure and dynamics in a microscopic model of thin-film active gels. Physical Review E, 2014, 89, 032705.	2.1	21
133	Towards a Mechanistic Understanding of Cellular Uptake. Biophysical Journal, 2014, 106, 576a.	0.5	1
134	Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles. Nano Letters, 2014, 14, 687-693.	9.1	432
135	The computational sperm cell. Trends in Cell Biology, 2014, 24, 198-207.	7.9	106
136	White blood cell margination in microcirculation. Soft Matter, 2014, 10, 2961-2970.	2.7	97
137	Conformational State Distributions and Catalytically Relevant Dynamics ofÂa Hinge-Bending Enzyme Studied by Single-Molecule FRET and a Coarse-Grained Simulation. Biophysical Journal, 2014, 107, 1913-1923.	0.5	23
138	Interfacing Electrogenic Cells with 3D Nanoelectrodes: Position, Shape, and Size Matter. ACS Nano, 2014, 8, 6713-6723.	14.6	101
139	Cooperative motion of active Brownian spheres in three-dimensional dense suspensions. Europhysics Letters, 2014, 105, 48004.	2.0	201
140	Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte. Biophysical Journal, 2014, 107, 43-54.	0.5	85
141	Structure and Dynamics of a Compact State of a Multidomain Protein, the Mercuric Ion Reductase. Biophysical Journal, 2014, 107, 393-400.	0.5	19
142	Scaffold Structures by Telechelic Rodlike Polymers: Nonequilibrium Structural and Rheological Properties under Shear Flow. Macromolecules, 2014, 47, 6946-6954.	4.8	10
143	Self-Organized Structures of Attractive End-Functionalized Semiflexible Polymer Suspensions. Macromolecules, 2014, 47, 4118-4125.	4.8	23
144	Multiparticle collision dynamics: GPU accelerated particle-based mesoscale hydrodynamic simulations. Computer Physics Communications, 2014, 185, 495-503.	7.5	46

#	Article	IF	CITATIONS
145	Hydrodynamic correlations and diffusion coefficient of star polymers in solution. Journal of Chemical Physics, 2014, 141, 084901.	3.0	30
146	Capillary Assembly of Microscale Ellipsoidal, Cuboidal, and Spherical Particles at Interfaces. Langmuir, 2014, 30, 11873-11882.	3.5	53
147	Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter, 2014, 10, 4258-4267.	2.7	147
148	Interdomain Dynamics of Phosphoglycerate Kinase Studied by Single-Molecule FRET and a Mesoscale Hydrodynamics Simulation. Biophysical Journal, 2014, 106, 253a.	0.5	0
149	Self-organized vortices of circling self-propelled particles and curved active flagella. Physical Review E, 2014, 89, 012720.	2.1	25
150	Multiscale modeling of blood flow: from single cells to blood rheology. Biomechanics and Modeling in Mechanobiology, 2014, 13, 239-258.	2.8	200
151	Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Scientific Reports, 2014, 4, 4871.	3.3	228
152	Sedimentation of single red blood cells. Soft Matter, 2013, 9, 8346.	2.7	30
153	Mesoscale hydrodynamics simulations of particle suspensions under shear flow: From hard to ultrasoft colloids. European Physical Journal: Special Topics, 2013, 222, 2773-2786.	2.6	7
154	Dynamical and Rheological Properties of Ultrasoft Colloids under Shear Flow. Macromolecules, 2013, 46, 8026-8036.	4.8	36
155	Wall accumulation of self-propelled spheres. Europhysics Letters, 2013, 101, 48003.	2.0	221
156	Red Blood Cell Membrane Fluctuations and their Mechanisms: Passive Versus Active. Biophysical Journal, 2013, 104, 427a.	0.5	0
157	Effect of hydrodynamic correlations on the dynamics of polymers in dilute solution. Journal of Chemical Physics, 2013, 138, 144902.	3.0	37
158	Wrapping of ellipsoidal nano-particles by fluid membranes. Soft Matter, 2013, 9, 5473-5482.	2.7	109
159	Confinement Effects in Block Copolymer Modified Bicontinuous Microemulsions. Journal of Physical Chemistry B, 2013, 117, 5623-5632.	2.6	16
160	Structure formation of surfactant membranes under shear flow. Journal of Chemical Physics, 2013, 139, 014702.	3.0	8
161	Hydrodynamic mechanisms of spinodal decomposition in confined colloid-polymer mixtures: A multiparticle collision dynamics study. Journal of Chemical Physics, 2013, 138, 054901.	3.0	26
162	Dynamics and rheology of vesicle suspensions in wall-bounded shear flow. Europhysics Letters, 2013, 102, 28004.	2.0	19

#	Article	IF	CITATIONS
163	Collective behavior of penetrable self-propelled rods in two dimensions. Physical Review E, 2013, 88, 062314.	2.1	94
164	Fluctuation pressure of biomembranes in planar confinement. Physical Review E, 2013, 88, 010701.	2.1	9
165	Emergence of metachronal waves in cilia arrays. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4470-4475.	7.1	313
166	Synchronization, Slippage, and Unbundling of Driven Helical Flagella. PLoS ONE, 2013, 8, e70868.	2.5	61
167	Spindles and Active Vortices. , 2013, , 25-47.		0
168	Monte Carlo Studies of C ₆₀ - and C ₇₀ -Peapods. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 371-377.	2.1	1
169	Ordering and arrangement of deformed red blood cells in flow through microcapillaries. New Journal of Physics, 2012, 14, 085026.	2.9	25
170	Confinement-induced screening of hydrodynamic interactions and spinodal decomposition: Multiscale simulations of colloid-polymer mixtures. Europhysics Letters, 2012, 100, 46003.	2.0	3
171	Scattering intensity of bicontinuous microemulsions and sponge phases. Journal of Chemical Physics, 2012, 136, 134708.	3.0	27
172	Conformational and dynamical properties of ultra-soft colloids in semi-dilute solutions under shear flow. Journal of Physics Condensed Matter, 2012, 24, 464103.	1.8	18
173	Hydrodynamic correlations in multiparticle collision dynamics fluids. Physical Review E, 2012, 86, 056711.	2.1	69
174	Flow-Induced Helical Coiling of Semiflexible Polymers in Structured Microchannels. Physical Review Letters, 2012, 109, 178101.	7.8	44
175	Fluctuating shells under pressure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19551-19556.	7.1	57
176	Non-Equilibrium Properties of Semidilute Polymer Solutions under Shear Flow. Journal of Physics: Conference Series, 2012, 392, 012003.	0.4	9
177	Non-equilibrium relaxation and tumbling times of polymers in semidilute solution. Journal of Physics Condensed Matter, 2012, 24, 284131.	1.8	19
178	Margination of White Blood Cells in Microcapillary Flow. Physical Review Letters, 2012, 108, 028104.	7.8	111
179	Synchronization and bundling of anchored bacterial flagella. Soft Matter, 2012, 8, 4363.	2.7	111
180	Semidilute solutions of ultra-soft colloids under shear flow. Soft Matter, 2012, 8, 4109.	2.7	38

#	Article	IF	CITATIONS
181	Simple and Complex Micelles in Amphiphilic Mixtures: A Coarse-Grained Mean-Field Study. Macromolecules, 2012, 45, 525-535.	4.8	6
182	Microscopic basis for pattern formation and anomalous transport in two-dimensional active gels. Soft Matter, 2011, 7, 3116-3126.	2.7	19
183	Bilayers Connected by Threadlike Micelles in Amphiphilic Mixtures: A Self-Consistent Field Theory Study. Langmuir, 2011, 27, 3416-3423.	3.5	12
184	Response to Comment on Article: Hydrodynamics of Sperm Cells Near Surfaces. Biophysical Journal, 2011, 100, 2321-2324.	0.5	8
185	Deformation and clustering of red blood cells in microcapillary flows. Soft Matter, 2011, 7, 10967.	2.7	63
186	Dynamics of a polymer chain confined in a membrane. European Physical Journal E, 2011, 34, 46.	1.6	29
187	Spindles and active vortices in a model of confined filament-motor mixtures. BMC Biophysics, 2011, 4, 18.	4.4	15
188	A Monte Carlo study of C70 molecular motion in C70@SWCNT peapods. Carbon, 2011, 49, 2007-2021.	10.3	11
189	Tumbling of polymers in semidilute solution under shear flow. Europhysics Letters, 2011, 93, 54004.	2.0	45
190	Semiflexible polymer conformation, distribution and migration in microcapillary flows. Journal of Physics Condensed Matter, 2011, 23, 184117.	1.8	17
191	Compression, crumpling and collapse of spherical shells and capsules. New Journal of Physics, 2011, 13, 045020.	2.9	71
192	Dynamic self-assembly and directed flow of rotating colloids in microchannels. Physical Review E, 2011, 84, 031404.	2.1	23
193	Nonequilibrium Forces between Dragged Ultrasoft Colloids. Physical Review Letters, 2011, 107, 158301.	7.8	28
194	Near-surface structure of a bicontinuous microemulsion with a transition region. Physical Review E, 2011, 83, 030401.	2.1	37
195	Publisher's Note: Dynamic self-assembly and directed flow of rotating colloids in microchannels [Phys. Rev. E84, 031404 (2011)]. Physical Review E, 2011, 84, .	2.1	0
196	Predicting human blood viscosity in silico. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11772-11777.	7.1	278
197	Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow. Journal of Chemical Physics, 2011, 135, 134116.	3.0	19
198	Effects of an embedding bulk fluid on phase separation dynamics in a thin liquid film. Europhysics Letters, 2010, 89, 56001.	2.0	37

#	Article	IF	CITATIONS
199	Dynamics of fluid vesicles in flow through structured microchannels. Europhysics Letters, 2010, 89, 28002.	2.0	39
200	Molecular ordering in C70@CNT nanopeapods. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s71-s71.	0.3	0
201	Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations. Journal of Computational Physics, 2010, 229, 168-177.	3.8	115
202	Migration of semiflexible polymers in microcapillary flow. Europhysics Letters, 2010, 91, 14001.	2.0	63
203	Flow generation by rotating colloids in planar microchannels. Europhysics Letters, 2010, 92, 64003.	2.0	24
204	Budding and Vesiculation Induced by Conical Membrane Proteins. Biophysical Journal, 2010, 98, 283a.	0.5	0
205	Mesoscale simulations of hydrodynamic squirmer interactions. Physical Review E, 2010, 82, 041921.	2.1	122
206	Hydrodynamics of Sperm Cells near Surfaces. Biophysical Journal, 2010, 99, 1018-1026.	0.5	197
207	Fluctuations of a long, semiflexible polymer in a narrow channel. Physical Review E, 2010, 82, 041801.	2.1	71
208	Swarm behavior of self-propelled rods and swimming flagella. Physical Review E, 2010, 82, 031904.	2.1	162
209	Semidilute Polymer Solutions at Equilibrium and under Shear Flow. Macromolecules, 2010, 43, 10107-10116.	4.8	154
210	Lipid membranes with transmembrane proteins in shear flow. Journal of Chemical Physics, 2010, 132, 025101.	3.0	11
211	Multi-particle collision dynamics simulations of sedimenting colloidal dispersions in confinement. Faraday Discussions, 2010, 144, 245-252.	3.2	24
212	Hydrodynamic interactions in rod suspensions with orientational ordering. Soft Matter, 2010, 6, 4556.	2.7	35
213	Dynamical regimes and hydrodynamic lift of viscous vesicles under shear. Physical Review E, 2009, 80, 011901.	2.1	71
214	Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6039-6043.	7.1	256
215	Self-propelled rods near surfaces. Europhysics Letters, 2009, 85, 38002.	2.0	142
216	Twist grain boundaries in cubic surfactant phases. Journal of Chemical Physics, 2009, 130, 134712.	3.0	7

#	Article	IF	CITATIONS
217	Orientational ordering in solid C60 fullerene-cubane. Journal of Chemical Physics, 2009, 130, 154510.	3.0	9
218	Direct observation of hydrodynamic instabilities in a driven non-uniform colloidal dispersion. Soft Matter, 2009, 5, 1340.	2.7	64
219	Budding and vesiculation induced by conical membrane inclusions. Physical Review E, 2009, 80, 031901.	2.1	64
220	Multi-Particle Collision Dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids. , 2009, , 1-87.		164
221	Two-dimensional fluctuating vesicles in linear shear flow. European Physical Journal E, 2008, 25, 309-321.	1.6	51
222	Editorial[24pt] A unified view of soft matter systems?. European Physical Journal E, 2008, 26, 1-2.	1.6	7
223	Fullereneâ€cubane: Xâ€ray Scattering Experiments and Monte Carlo Simulations. Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 293-300.	2.1	6
224	Multiparticle collision dynamics modeling of viscoelastic fluids. Journal of Chemical Physics, 2008, 128, 144902.	3.0	35
225	Mesoscale hydrodynamics simulations of attractive rod-like colloids in shear flow. Journal of Physics Condensed Matter, 2008, 20, 404209.	1.8	13
226	Mesoscale simulations of polymer dynamics in microchannel flows. Europhysics Letters, 2008, 83, 34007.	2.0	55
227	Transport coefficients of off-lattice mesoscale-hydrodynamics simulation techniques. Physical Review E, 2008, 78, 016706.	2.1	90
228	Attractive Colloidal Rods in Shear Flow. Physical Review Letters, 2008, 101, 168302.	7.8	71
229	Cooperation of sperm in two dimensions: Synchronization, attraction, and aggregation through hydrodynamic interactions. Physical Review E, 2008, 78, 061903.	2.1	164
230	Monte Carlo simulations of fullerene-cubane. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C420-C420.	0.3	0
231	Transport coefficients of dissipative particle dynamics with finite time step. Europhysics Letters, 2007, 79, 36002.	2.0	25
232	Swinging and Tumbling of Fluid Vesicles in Shear Flow. Physical Review Letters, 2007, 98, 128103.	7.8	164
233	Particle-based mesoscale hydrodynamic techniques. Europhysics Letters, 2007, 78, 10005.	2.0	107
234	Free energy and extension of a semiflexible polymer in cylindrical confining geometries. Physical Review E, 2007, 76, 011804.	2.1	106

#	Article	IF	CITATIONS
235	Relevance of angular momentum conservation in mesoscale hydrodynamics simulations. Physical Review E, 2007, 76, 046705.	2.1	88
236	Defect Scars on Flexible Surfaces with Crystalline Order. Physical Review Letters, 2007, 98, 198101.	7.8	20
237	Hydrodynamic screening of star polymers in shear flow. European Physical Journal E, 2007, 23, 349-354.	1.6	77
238	Mechanical properties of icosahedral virus capsids. Journal of Computer-Aided Materials Design, 2007, 14, 111-119.	0.7	2
239	Meshless membrane model based on the moving least-squares method. Physical Review E, 2006, 73, 021903.	2.1	86
240	Mechanical Deformation of Spherical Viruses with Icosahedral Symmetry. Biophysical Journal, 2006, 91, 834-841.	0.5	69
241	Mixing A and B Homopolymers with AC Diblock Copolymers:Â Phase Behavior of Asymmetric Polymer Blends. Macromolecules, 2006, 39, 5497-5511.	4.8	16
242	Forced crumpling of self-avoiding elastic sheets. Nature Materials, 2006, 5, 216-221.	27.5	145
243	SANS studies of confined diblock copolymers in microemulsions. Physica B: Condensed Matter, 2006, 385-386, 738-741.	2.7	7
244	Dynamics of vesicle self-assembly and dissolution. Journal of Chemical Physics, 2006, 125, 164908.	3.0	78
245	Publisher's Note: Meshless membrane model based on the moving least-squares method [Phys. Rev. E73, 021903 (2006)]. Physical Review E, 2006, 73, .	2.1	2
246	Star Polymers in Shear Flow. Physical Review Letters, 2006, 96, 188302.	7.8	138
247	Simulation of complex fluids by multi-particle-collision dynamics. Computer Physics Communications, 2005, 169, 326-330.	7.5	16
248	DNA condensation and redissolution: interaction between overcharged DNA molecules. Journal of Physics Condensed Matter, 2005, 17, S1827-S1840.	1.8	15
249	Vesicle dynamics in shear and capillary flows. Journal of Physics Condensed Matter, 2005, 17, S3439-S3444.	1.8	24
250	Fluctuation spectrum of membranes with anchored linear and star polymers. Physical Review E, 2005, 72, 031904.	2.1	29
251	Dynamics of polymers in a particle-based mesoscopic solvent. Journal of Chemical Physics, 2005, 123, 144905.	3.0	133
252	Shape transitions of fluid vesicles and red blood cells in capillary flows. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14159-14164.	7.1	481

#	Article	IF	CITATIONS
253	Dynamics of fluid vesicles in shear flow: Effect of membrane viscosity and thermal fluctuations. Physical Review E, 2005, 72, 011901.	2.1	184
254	Dynamic regimes of fluids simulated by multiparticle-collision dynamics. Physical Review E, 2005, 72, 016701.	2.1	142
255	Shapes of crystalline domains on spherical fluid vesicles. Europhysics Letters, 2005, 70, 136-142.	2.0	59
256	Attraction between DNA molecules mediated by multivalent ions. Physical Review E, 2004, 69, 041904.	2.1	83
257	Helical polymer in cylindrical confining geometries. Physical Review E, 2004, 70, 051804.	2.1	12
258	Fluid Vesicles with Viscous Membranes in Shear Flow. Physical Review Letters, 2004, 93, 258102.	7.8	234
259	DNA condensation, redissolution and mesocrystals induced by tetravalent counterions. Europhysics Letters, 2004, 68, 894-900.	2.0	8
260	Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics. Europhysics Letters, 2004, 68, 106-112.	2.0	144
261	Rod-like colloids and polymers in shear flow: a multi-particle-collision dynamics study. Journal of Physics Condensed Matter, 2004, 16, S3941-S3954.	1.8	65
262	SANS studies of polymer efficiency boosting in microemulsions—diblock copolymers versus homopolymers. Physica B: Condensed Matter, 2004, 350, E931-E933.	2.7	5
263	Efficiency boosting and optional viscosity tuning in microemulsions studied by SANS. Physica B: Condensed Matter, 2004, 350, 186-192.	2.7	7
264	TRIANGULATED-SURFACE MODELS OF FLUCTUATING MEMBRANES. , 2004, , 359-426.		50
265	Advanced Flicker Spectroscopy of Fluid Membranes. Physical Review Letters, 2003, 91, 048301.	7.8	64
266	Adsorption of monovalent and multivalent cations and anions on DNA molecules. Physical Review E, 2003, 68, 061903.	2.1	32
267	Self-avoiding linear and star polymers anchored to membranes. Physical Review E, 2003, 68, 051801.	2.1	37
268	Budding of crystalline domains in fluid membranes. Physical Review E, 2003, 68, 061905.	2.1	63
269	Giant Hexagonal Superstructures in Diblock-Copolymer Membranes. Physical Review Letters, 2002, 89, 238302.	7.8	58
270	Mesoscopic solvent simulations: Multiparticle-collision dynamics of three-dimensional flows. Physical Review E, 2002, 66, 036702.	2.1	112

#	Article	IF	CITATIONS
271	Elastic properties of polymer interfaces: Aggregation of pure diblock, mixed diblock, and triblock copolymers. Physical Review E, 2002, 66, 041805.	2.1	37
272	Wetting in ternary mixtures—with and without amphiphiles. Journal of Chemical Physics, 2002, 117, 7284-7294.	3.0	3
273	The freezing transition of flexible membranes. Europhysics Letters, 2002, 58, 60-66.	2.0	3
274	Amphiphilic block copolymers as efficiency boosters in microemulsions: a SANS investigation of the role of polymers. Applied Physics A: Materials Science and Processing, 2002, 74, s392-s395.	2.3	10
275	Neutron spin-echo investigation of the microemulsion dynamics. in bicontinuous, lamellar and droplet phases. Applied Physics A: Materials Science and Processing, 2002, 74, s414-s417.	2.3	4
276	Phase behavior of two-component membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 208, 241-251.	4.7	14
277	Numerical study of the flow around a cylinder using multi-particle collision dynamics. European Physical Journal E, 2002, 9, 477-485.	1.6	54
278	Bicontinuous Surfaces in Self-assembling Amphiphilic Systems. Lecture Notes in Physics, 2002, , 107-151.	0.7	20
279	Bending Frustration of Lipidâ^'Water Mesophases Based on Cubic Minimal Surfaces1. Langmuir, 2001, 17, 2084-2096.	3.5	72
280	Multi-particle collision dynamics: Flow around a circular and a square cylinder. Europhysics Letters, 2001, 56, 319-325.	2.0	200
281	Dynamics of the swollen lamellar phase. European Physical Journal E, 2001, 4, 103-114.	1.6	11
282	Amphiphilic block copolymers in oil-water-surfactant mixtures: efficiency boosting, structure, phase behaviour and mechanism. Journal of Physics Condensed Matter, 2001, 13, 9055-9074.	1.8	22
283	Measuring bending rigidity and spatial renormalization in bicontinuous microemulsions. Europhysics Letters, 2001, 56, 683-689.	2.0	68
284	Shape transformations of two-component membranes under weak tension. Europhysics Letters, 2001, 55, 587-593.	2.0	46
285	Effect of amphiphilic block copolymers on the structure and phase behavior of oil–water-surfactant mixtures. Journal of Chemical Physics, 2001, 115, 580-600.	3.0	108
286	Dynamics of bicontinuous microemulsion phases with and without amphiphilic block-copolymers. Journal of Chemical Physics, 2001, 115, 9563-9577.	3.0	86
287	Budding Dynamics of Multicomponent Membranes. Physical Review Letters, 2001, 86, 3911-3914.	7.8	181
288	Semiflexible polymer in a uniform force field in two dimensions. Physical Review E, 2001, 64, 061801.	2.1	24

#	Article	IF	CITATIONS
289	Melting transition of a network model in two dimensions. European Physical Journal E, 2000, 1, 153-157.	1.6	8
290	Statistical mechanics of membranes: freezing, undulations, and topology fluctuations. Journal of Physics Condensed Matter, 2000, 12, A29-A37.	1.8	18
291	Stability of bicontinuous cubic phases in ternary amphiphilic systems with spontaneous curvature. Journal of Chemical Physics, 2000, 112, 3792-3802.	3.0	22
292	Stability of Inverse Bicontinuous Cubic Phases in Lipid-Water Mixtures. Physical Review Letters, 2000, 85, 1472-1475.	7.8	70
293	Membrane Decoration by Amphiphilic Block Copolymers in Bicontinuous Microemulsions. Physical Review Letters, 2000, 85, 102-105.	7.8	83
294	Modulated phases in multicomponent fluid membranes. Physical Review E, 1999, 60, 4610-4618.	2.1	74
295	Shapes and shape transformations of two-component membranes of complex topology. Physical Review E, 1999, 59, 4305-4316.	2.1	33
296	Systematic approach to bicontinuous cubic phases in ternary amphiphilic systems. Physical Review E, 1999, 59, 5528-5541.	2.1	63
297	Lattice-Boltzmann study of spontaneous emulsification. European Physical Journal B, 1999, 11, 91-100.	1.5	37
298	Mobility and Elasticity of Self-Assembled Membranes. Physical Review Letters, 1999, 82, 221-224.	7.8	457
299	Membranes with Fluctuating Topology: Monte Carlo Simulations. Physical Review Letters, 1998, 81, 2284-2287.	7.8	76
300	Composition-Driven Shape Transformations of Membranes of Complex Topology. Physical Review Letters, 1998, 80, 4213-4216.	7.8	29
301	Lattice-Boltzmann model of amphiphilic systems. Europhysics Letters, 1998, 42, 419-424.	2.0	29
302	Network models of fluid, hexatic and polymerized membranes. Journal of Physics Condensed Matter, 1997, 9, 8795-8834.	1.8	117
303	Freezing Flexible Vesicles. Physical Review Letters, 1997, 78, 2859-2862.	7.8	18
304	Fluctuations of polymerized, fluid and hexatic membranes: Continuum models and simulations. Current Opinion in Colloid and Interface Science, 1997, 2, 373-381.	7.4	24
305	Patterns of stress in crumpled sheets. Nature, 1997, 386, 439-441.	27.8	15
306	The Freezing of Flexible Vesicles of Spherical Topology. Journal De Physique, I, 1997, 7, 1369-1390.	1.2	4

#	Article	IF	CITATIONS
307	Random Surface Discretizations and the Renormalization of the Bending Rigidity. Journal De Physique, I, 1996, 6, 1305-1320.	1.2	104
308	Ginzburgâ€Landau Theories of Ternary Amphiphilic Systems. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 264-271.	0.9	4
309	Dynamical behavior of microemulsion and sponge phases in thermal equilibrium. Physical Review E, 1996, 54, 3811-3831.	2.1	18
310	The lamellar-to-isotropic transition in ternary amphiphilic systems. Europhysics Letters, 1996, 36, 117-122.	2.0	9
311	STRUCTURE, TOPOLOGY AND PHASE BEHAVIOUR OF AMPHIPHILIC SYSTEMS. , 1995, , 101-136.		3
312	Phase diagram and scattering intensity of binary amphiphilic systems. European Physical Journal B, 1995, 97, 233-238.	1.5	5
313	Phase diagram and scaling behavior of fluid vesicles. Physical Review E, 1995, 51, 514-525.	2.1	63
314	Polymer and vesicle conformation and scaling in elongational flow fields. Journal of Chemical Physics, 1995, 102, 9109-9120.	3.0	10
315	Layering, dewetting, and firstâ€order wetting in ternary amphiphilic systems. Journal of Chemical Physics, 1995, 102, 2871-2880.	3.0	13
316	Reply to â€~â€~Comment on â€~Fluctuating interfaces in microemulsion and sponge phases' ''. Physic E, 1995, 52, 1248-1249.	cal Review 2.1	3
317	Driven transport of fluid vesicles through narrow pores. Physical Review E, 1995, 52, 4198-4208.	2.1	60
318	Fluctuations and Phase Behavior of Passages in a Stack of Fluid Membranes. Journal De Physique II, 1995, 5, 621-634.	0.9	16
319	Sound Attenuation and Dispersion in Microemulsions. Europhysics Letters, 1994, 25, 193-198.	2.0	14
320	Dynamic Structure Factor of Microemulsions. Physical Review Letters, 1994, 73, 1114-1117.	7.8	13
321	Phase Diagram of Fluid Vesicles. Physical Review Letters, 1994, 73, 2139-2142.	7.8	25
322	Scattering from internal interfaces in microemulsion and sponge phases. Physical Review E, 1994, 49, 1478-1482.	2.1	42
323	Fluctuating interfaces in microemulsion and sponge phases. Physical Review E, 1994, 50, 1325-1335.	2.1	48
324	â€~â€~Confined'' water and hydrophobic attraction as a result of metastable coordination, stabilized by hydrophobic surfaces. Journal of Chemical Physics, 1994, 101, 3378-3389.	3.0	28

#	Article	IF	CITATIONS
325	Statistische Physik von ZufallsflÄ ¤ hen. Physik Journal, 1994, 50, 557-560.	0.1	1
326	Internal structure of microemulsions and sponge phases. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 501-503.	0.9	2
327	Lattice Theories of Microemulsions. Partially Ordered Systems, 1994, , 395-426.	6.5	6
328	Equilibrium dynamics of microemulsion and sponge phases. Journal De Physique II, 1994, 4, 1375-1391.	0.9	8
329	Floppy fluid vesicles in elongational flow. Physical Review Letters, 1993, 71, 1111-1114.	7.8	5
330	Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations. Physical Review E, 1993, 47, 4301-4312.	2.1	68
331	Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations. Physical Review E, 1993, 47, 4289-4300.	2.1	66
332	Floppy Tethered Networks. Journal De Physique, I, 1993, 3, 1131-1140.	1.2	22
333	The Conformation of Fluid Vesicles. The IMA Volumes in Mathematics and Its Applications, 1993, , 49-55.	0.5	0
334	The conformation of fluid membranes: Monte Carlo simulations. Science, 1992, 255, 968-971.	12.6	113
335	Inflated Vesicles: A New Phase of Fluid Membranes. Europhysics Letters, 1992, 19, 581-586.	2.0	16
336	Variation with amphiphilic strength of the properties of ternary mixtures. Physical Review A, 1992, 46, 985-993.	2.5	25
337	Scaling behavior of randomly triangulated self-avoiding surfaces. Physical Review A, 1992, 46, 3119-3122.	2.5	22
338	Shape of inflated vesicles. Physical Review A, 1992, 46, 7466-7473.	2.5	23
339	Ginzburg-Landau theory of aqueous surfactant solutions. Journal De Physique II, 1992, 2, 1725-1744.	0.9	24
340	Ginzburg-Landau theory of oil-water-surfactant mixtures. Physical Review A, 1992, 46, 4836-4851.	2.5	110
341	Bulk and Interfacial Properties of Amphiphilic Systems: A Ginzburg-Landau Approach. , 1992, , 815-826.		1
342	Edge correlations of fluid and tethered membranes. Journal De Physique, I, 1992, 2, 663-676.	1.2	8

#	Article	IF	CITATIONS
343	Ginzburg-Landau Theory of Bulk and Interfacial Properties of Amphiphilic Systems. Springer Proceedings in Physics, 1992, , 206-211.	0.2	0
344	Elastic Properties of Interfaces in a Ginzburg-Landau Theory of Swollen Micelles, Droplet Crystals and Lamellar Phases. Europhysics Letters, 1991, 16, 731-736.	2.0	52
345	A Polymerized Membrane in Confined Geometry. Europhysics Letters, 1991, 15, 783-788.	2.0	19
346	Interfacial properties of amphiphilic systems: The approach to Lifshitz points. Physical Review A, 1991, 43, 3157-3160.	2.5	37
347	Fluctuations of a polymerized membrane between walls. Journal De Physique, I, 1991, 1, 1411-1432.	1.2	10
348	Unbinding Transitions of Polymers or Membranes in Two Dimensions. NATO ASI Series Series B: Physics, 1991, , 175-187.	0.2	2
349	Unbinding transition of flexible Gaussian polymers in two dimensions. Journal of Physics A, 1990, 23, L1161-L1167.	1.6	8
350	Lattice model of microemulsions. Physical Review B, 1990, 41, 9148-9162.	3.2	112
351	Correlation between structural and interfacial properties of amphiphilic systems. Physical Review Letters, 1990, 65, 1116-1119.	7.8	195
352	Nonclassical wetting behavior in the solid-on-solid limit of the three-dimensional Ising model. Physical Review B, 1990, 42, 961-964.	3.2	33
353	Lattice model of microemulsions: The effect of fluctuations in one and two dimensions. Physical Review A, 1990, 42, 2137-2149.	2.5	39
354	Steric Interactions in Multimembrane Systems: A Monte Carlo Study. Europhysics Letters, 1989, 9, 59-64.	2.0	73
355	Finite-size effects at wetting transitions. Physical Review B, 1989, 39, 433-445.	3.2	28
356	Surface melting and surface-induced-disorder transitions in thin films: The effect of hidden variables. Physical Review B, 1989, 40, 7221-7229.	3.2	13
357	Unbinding transition of semiflexible membranes in (1+1) dimensions. Physical Review A, 1989, 40, 6124-6127.	2.5	41
358	Microemulsion structure from a three-component lattice model. Physical Review Letters, 1989, 62, 1647-1650.	7.8	98
359	Phase and scattering behavior of disordered aqueous surfactant solutions as the binary limit of ternary microemulsions. Chemical Physics Letters, 1989, 163, 475-479.	2.6	35
360	Monte Carlo study of nonuniversal wetting behavior in (2+1) dimensions. Physical Review B, 1988, 37, 3821-3824.	3.2	37

0

#	Article	IF	CITATIONS
361	Wetting in fcc Ising antiferromagnets and binary alloys. II. A Monte Carlo and renormalization-group study. Physical Review B, 1988, 38, 459-473.	3.2	41
362	Critical Behaviour of Effective Interface Models for Wetting in Three Dimensions. Europhysics Letters, 1988, 5, 49-53.	2.0	19
363	Wetting in fcc Ising antiferromagnets and binary alloys. Physical Review B, 1987, 36, 7078-7090.	3.2	56
364	Grazing incidence diffraction of X-rays at a Si single crystal surface: Comparison of theory and experiment. European Physical Journal B, 1987, 69, 303-311.	1.5	40
365	Universal amplitudes for critical surface scattering. European Physical Journal B, 1986, 62, 357-366.	1.5	10
366	Conformal invariance in semi-infinite systems: Application to critical surface scattering. European Physical Journal B, 1985, 59, 193-196.	1.5	13
367	Universal relations among critical amplitudes of surface quantities. Physical Review B, 1985, 31, 5841-5853.	3.2	20
368	Interface delocalization transitions in finite systems. Physical Review B, 1984, 29, 5213-5215.	3.2	69
369	Scaling functions for critical surface scattering. European Physical Journal B, 1984, 56, 217-227.	1.5	25

An Introduction to Soft Matter. , 0, , 1-16.