
Galina G Karganova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6655033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 infection in children in Moscow in 2020: clinical features and impact on circulation of other respiratory viruses. International Journal of Infectious Diseases, 2022, 116, 331-338.	3.3	7
2	Differentiation of Laboratory-Obtained Ixodes ricinus × Ixodes persulcatus Hybrid Ticks: Selection of Suitable Genes. Microorganisms, 2022, 10, 1306.	3.6	3
3	Isolation and characterization of Wad Medani virus obtained in the tuva Republic of Russia. Ticks and Tick-borne Diseases, 2021, 12, 101612.	2.7	3
4	Geographical and Tick-Dependent Distribution of Flavi-Like Alongshan and Yanggou Tick Viruses in Russia. Viruses, 2021, 13, 458.	3.3	27
5	Experimental Assessment of Possible Factors Associated with Tick-Borne Encephalitis Vaccine Failure. Microorganisms, 2021, 9, 1172.	3.6	14
6	Effect of immature tick-borne encephalitis virus particles on antiviral activity of 5-aminoisoxazole-3-carboxylic acid adamantylmethyl esters. Journal of General Virology, 2021, 102, .	2.9	3
7	Genetic diversity of Kemerovo virus and phylogenetic relationships within the Great Island virus genetic group. Ticks and Tick-borne Diseases, 2020, 11, 101333.	2.7	4
8	Phlebovirus sequences detected in ticks collected in Russia: Novel phleboviruses, distinguishing criteria and high tick specificity. Infection, Genetics and Evolution, 2020, 85, 104524.	2.3	5
9	TBEV Subtyping in Terms of Genetic Distance. Viruses, 2020, 12, 1240.	3.3	22
10	Baltic Group Tick-Borne Encephalitis Virus Phylogeography: Systemic Inconsistency Pattern between Genetic and Geographic Distances. Microorganisms, 2020, 8, 1589.	3.6	5
11	Spectrum of antiviral activity of 4-aminopyrimidine <i>N</i> -oxides against a broad panel of tick-borne encephalitis virus strains. Antiviral Chemistry and Chemotherapy, 2020, 28, 204020662094346.	0.6	11
12	Evervac: phase I/II study of immunogenicity and safety of a new adjuvant-free TBE vaccine cultivated in Vero cell culture. Human Vaccines and Immunotherapeutics, 2020, 16, 2123-2130.	3.3	12
13	Isolation and Characterisation of Alongshan Virus in Russia. Viruses, 2020, 12, 362.	3.3	45
14	Tick-Borne Encephalitis Virus: An Emerging Ancient Zoonosis?. Viruses, 2020, 12, 247.	3.3	24
15	First detection of tick-borne encephalitis virus in Ixodes ricinus ticks and their rodent hosts in Moscow, Russia. Ticks and Tick-borne Diseases, 2019, 10, 101265.	2.7	22
16	Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Research, 2019, 164, 23-51.	4.1	248
17	Ixodid ticks and tick-borne encephalitis virus prevalence in the South Asian part of Russia (Republic of) Tj ETQq1	1 0.78431 2.7	14 rgBT /Ove 20
18	Tick-borne flavivirus reproduction inhibitors based on isoxazole core linked with adamantane.	4.1	23

Bioorganic Chemistry, 2019, 87, 629-637.

4.1 23

#	Article	IF	CITATIONS
19	Comparison of the Immunogenicity and Safety of Two Pediatric TBE Vaccines Based on the Far Eastern and European Virus Subtypes. Advances in Virology, 2019, 2019, 1-9.	1.1	11
20	Ability of inactivated vaccines based on farâ€eastern tickâ€borne encephalitis virus strains to induce humoral immune response in originally seropositive and seronegative recipients. Journal of Medical Virology, 2019, 91, 190-200.	5.0	17
21	Precise tracking of vaccine-responding T cell clones reveals convergent and personalized response in identical twins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12704-12709.	7.1	108
22	3â€2-O-Substituted 5-(perylen-3-ylethynyl)-2â€2-deoxyuridines as tick-borne encephalitis virus reproduction inhibitors. European Journal of Medicinal Chemistry, 2018, 155, 77-83.	5.5	18
23	Experimental Evaluation of the Protective Efficacy of Tick-Borne Encephalitis (TBE) Vaccines Based on European and Far-Eastern TBEV Strains in Mice and in Vitro. Frontiers in Microbiology, 2018, 9, 1487.	3.5	11
24	Evaluation of the population heterogeneity of TBEV laboratory variants using high-throughput sequencing. Journal of General Virology, 2018, 99, 240-245.	2.9	5
25	New tools in nucleoside toolbox of tick-borne encephalitis virus reproduction inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1267-1273.	2.2	26
26	Perylenyltriazoles inhibit reproduction of enveloped viruses. European Journal of Medicinal Chemistry, 2017, 138, 293-299.	5.5	23
27	Properties of the tick-borne encephalitis virus population during persistent infection of ixodid ticks and tick cell lines. Ticks and Tick-borne Diseases, 2017, 8, 895-906.	2.7	26
28	Intracellular degradation and localization of NS1 of tick-borne encephalitis virus affect its protective properties. Journal of General Virology, 2017, 98, 50-55.	2.9	8
29	The phylodynamics of the rabies virus in the Russian Federation. PLoS ONE, 2017, 12, e0171855.	2.5	21
30	Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin. Vaccine, 2016, 34, 2354-2361.	3.8	34
31	Recombinant domains III of Tick-Borne Encephalitis Virus envelope protein in combination with dextran and CpGs induce immune response and partial protectiveness against TBE virus infection in mice. BMC Infectious Diseases, 2016, 16, 544.	2.9	14
32	Nonstructural protein 1 of tick-borne encephalitis virus activates the expression of immunoproteasome subunits. Molecular Biology, 2016, 50, 307-312.	1.3	3
33	Morphological features of Ixodes persulcatus and I. ricinus hybrids: nymphs and adults. Experimental and Applied Acarology, 2016, 69, 359-369.	1.6	15
34	Development of pan-phlebovirus RT-PCR assay. Journal of Virological Methods, 2016, 232, 29-32.	2.1	10
35	Rigid amphipathic nucleosides suppress reproduction of the tick-borne encephalitis virus. MedChemComm, 2016, 7, 495-499.	3.4	33
36	Lethal Experimental Tick-Borne Encephalitis Infection: Influence of Two Strains with Similar Virulence on the Immune Response. Frontiers in Microbiology, 2016, 7, 2172.	3.5	19

Galina G Karganova

#	Article	IF	CITATIONS
37	Vaccines based on the Far-Eastern and European strains induce the neutralizing antibodies against all known tick-borne encephalitis virus subtypes. Voprosy Virusologii, 2016, 61, 135-139.	0.7	11
38	Genetic description of a tick-borne encephalitis virus strain Sofjin with the longest history as a vaccine strain. SpringerPlus, 2015, 4, 761.	1.2	21
39	Synthesis and assessment of 4-aminotetrahydroquinazoline derivatives as tick-borne encephalitis virus reproduction inhibitors. Organic and Biomolecular Chemistry, 2015, 13, 3406-3415.	2.8	37
40	Morphological differentiation of Ixodes persulcatus and I. ricinus hybrid larvae in experiment and under natural conditions. Ticks and Tick-borne Diseases, 2015, 6, 129-133.	2.7	15
41	Prevalence of Kemerovo virus in ixodid ticks from the Russian Federation. Ticks and Tick-borne Diseases, 2014, 5, 651-655.	2.7	23
42	Inhibitors of Tick-Borne Flavivirus Reproduction from Structure-Based Virtual Screening. ACS Medicinal Chemistry Letters, 2013, 4, 869-874.	2.8	66
43	Distribution of Ixodes ricinus and I. persulcatus ticks in southern Karelia (Russia). Ticks and Tick-borne Diseases, 2013, 4, 57-62.	2.7	41
44	Exploring of Primate Models of Tick-Borne Flaviviruses Infection for Evaluation of Vaccines and Drugs Efficacy. PLoS ONE, 2013, 8, e61094.	2.5	26
45	Different tick-borne encephalitis virus (TBEV) prevalences in unfed versus partially engorged ixodid ticks – Evidence of virus replication and changes in tick behavior. Ticks and Tick-borne Diseases, 2012, 3, 240-246.	2.7	52
46	A molecular model and Monte Carlo simulation of flavivirus envelope building block. Biochemical and Biophysical Research Communications, 2012, 425, 207-211.	2.1	2
47	Computational studies of flaviviruses: approaching to novel fusion inhibitors. Journal of Cheminformatics, 2012, 4, .	6.1	1
48	The current perspective on tick-borne encephalitis awareness and prevention in six Central and Eastern European countries: Report from a meeting of experts convened to discuss TBE in their region. Vaccine, 2011, 29, 4556-4564.	3.8	46
49	GAG-binding variants of tick-borne encephalitis virus. Virology, 2010, 398, 262-272.	2.4	50
50	Safety evaluation of chimeric Langat/Dengue 4 flavivirus, a live vaccine candidate against tickâ€borne encephalitis. Journal of Medical Virology, 2009, 81, 1777-1785.	5.0	27
51	Microevolution of tick-borne encephalitis virus in course of host alternation. Virology, 2007, 362, 75-84.	2.4	56
52	Crimean-Congo Hemorrhagic Fever in Russia and Other Countries of the Former Soviet Union. , 2007, , 99-114.		11
53	Evidence of segment reassortment in Crimean-Congo haemorrhagic fever virus. Journal of General Virology, 2004, 85, 3059-3070.	2.9	93
54	Crimean-Congo haemorrhagic fever virus: sequence analysis of the small RNA segments from a collection of viruses world wide. Virus Research, 2004, 102, 185-189.	2.2	105

GALINA G KARGANOVA

#	Article	IF	CITATIONS
55	Molecular epidemiology of enteroviruses causing uveitis and multisystem hemorrhagic disease of infants. Virology, 2003, 307, 45-53.	2.4	27
56	Phylogenetic and serological characterization of echovirus 11 and echovirus 19 strains causing uveitis. Archives of Virology, 2002, 147, 131-142.	2.1	11
57	Chimeric Langat/Dengue Viruses Protect Mice from Heterologous Challenge with the Highly Virulent Strains of Tick-Borne Encephalitis Virus. Virology, 2000, 274, 26-31.	2.4	37
58	Immunological basis for protection in a murine model of tick-borne encephalitis by a recombinant adenovirus carrying the gene encoding the NS1 non-structural protein Journal of General Virology, 1998, 79, 689-695.	2.9	34
59	Tick-borne encephalitis virus interaction with the target cells. Archives of Virology, 1992, 127, 321-325.	2.1	17