Teresa R O'meara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654746/publications.pdf

Version: 2024-02-01

34 papers

1,946 citations

304743 22 h-index 454955 30 g-index

40 all docs

40 docs citations

times ranked

40

2255 citing authors

#	Article	IF	CITATIONS
1	The Cryptococcus neoformans Capsule: a Sword and a Shield. Clinical Microbiology Reviews, 2012, 25, 387-408.	13.6	291
2	Global analysis of fungal morphology exposes mechanisms of host cell escape. Nature Communications, 2015, 6, 6741.	12.8	191
3	Interaction of Cryptococcus neoformans Rim101 and Protein Kinase A Regulates Capsule. PLoS Pathogens, 2010, 6, e1000776.	4.7	172
4	Adaptive immunity induces mutualism between commensal eukaryotes. Nature, 2021, 596, 114-118.	27.8	110
5	Cryptococcus neoformans Rim101 Is Associated with Cell Wall Remodeling and Evasion of the Host Immune Responses. MBio, 2013, 4, .	4.1	107
6	Cryptococcal Titan Cell Formation Is Regulated by G-Protein Signaling in Response to Multiple Stimuli. Eukaryotic Cell, 2011, 10, 1306-1316.	3.4	105
7	The Cryptococcus neoformans Alkaline Response Pathway: Identification of a Novel Rim Pathway Activator. PLoS Genetics, 2015, 11, e1005159.	3.5	80
8	Cryptococcus neoformans Histone Acetyltransferase Gcn5 Regulates Fungal Adaptation to the Host. Eukaryotic Cell, 2010, 9, 1193-1202.	3.4	78
9	The <i>Cryptococcus neoformans</i> Rim101 Transcription Factor Directly Regulates Genes Required for Adaptation to the Host. Molecular and Cellular Biology, 2014, 34, 673-684.	2.3	73
10	Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cellular and Molecular Life Sciences, 2015, 72, 2261-2287.	5.4	63
11	The Hsp90 Chaperone Network Modulates Candida Virulence Traits. Trends in Microbiology, 2017, 25, 809-819.	7.7	63
12	Fitness Trade-Offs Associated with the Evolution of Resistance to Antifungal Drug Combinations. Cell Reports, 2015, 10, 809-819.	6.4	58
13	High-Throughput Screening Identifies Genes Required for <i>Candida albicans</i> Induction of Macrophage Pyroptosis. MBio, 2018, 9, .	4.1	58
14	A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nature Communications, 2021, 12, 6151.	12.8	50
15	Tuning Hsf1 levels drives distinct fungal morphogenetic programs with depletion impairing Hsp90 function and overexpression expanding the target space. PLoS Genetics, 2018, 14, e1007270.	3.5	42
16	Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes. ELife, $2018, 7, \ldots$	6.0	41
17	Hsp90-dependent regulatory circuitry controlling temperature-dependent fungal development and virulence. Cellular Microbiology, 2014, 16, 473-481.	2.1	40
18	Mapping the Hsp90 Genetic Network Reveals Ergosterol Biosynthesis and Phosphatidylinositol-4-Kinase Signaling as Core Circuitry Governing Cellular Stress. PLoS Genetics, 2016, 12, e1006142.	3.5	36

#	Article	IF	CITATIONS
19	Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen. PLoS Biology, 2019, 17, e3000358.	5.6	34
20	Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets. Nature Communications, 2021, 12, 6497.	12.8	33
21	Forward and reverse genetic dissection of morphogenesis identifies filament-competent Candida auris strains. Nature Communications, 2021, 12, 7197.	12.8	32
22	Extensive functional redundancy in the regulation of <scp><i>C</i></scp> <i>andida albicans</i> drug resistance and morphogenesis by lysine deacetylases <scp>H</scp> os2, <scp>H</scp> da1, <scp>R</scp> pd3 and <scp>R</scp> pd31. Molecular Microbiology, 2017, 103, 635-656.	2.5	31
23	Reengineering biocatalysts: Computational redesign of chondroitinase ABC improves efficacy and stability. Science Advances, 2020, 6, eabc6378.	10.3	28
24	Staurosporine Induces Filamentation in the Human Fungal Pathogen Candida albicans via Signaling through Cyr1 and Protein Kinase A. MSphere, 2017, 2, .	2.9	17
25	A natural histone H2A variant lacking the Bub1 phosphorylation site and regulated depletion of centromeric histone CENP-A foster evolvability in Candida albicans. PLoS Biology, 2019, 17, e3000331.	5.6	16
26	DeORFanizing Candida albicans Genes using Coexpression. MSphere, 2021, 6, .	2.9	11
27	Mitochondrial perturbation reduces susceptibility to xenobiotics through altered efflux in <i>Candida albicans</i> . Genetics, 2021, 219, .	2.9	11
28	Insights into the host-pathogen interaction: C. albicans manipulation of macrophage pyroptosis. Microbial Cell, 2018, 5, 566-568.	3.2	11
29	Monitoring Inflammasome Priming and Activation in Response to <i>Candida albicans</i> Current Protocols in Microbiology, 2020, 59, e124.	6.5	2
30	Metagenomic Sequencing for Direct Identification of Candida auris Colonization. MSphere, 2021, 6, e0063821.	2.9	1
31	mSphere of Influence: Start with an Interesting Biological Phenomenon. MSphere, 2019, 4, .	2.9	O
32	Systems biology of host-Candida interactions: understanding how we shape each other. Current Opinion in Microbiology, 2020, 58, 1-7.	5.1	0
33	Germination of a Field: Women in Candida albicans Research. Current Clinical Microbiology Reports, 2021, 8, 139-151.	3.4	0
34	Protein–Protein Interaction Profiling in Candida albicans Revealed by Biochemical Purification–Mass Spectrometry (BP/MS). Methods in Molecular Biology, 2019, 2049, 203-211.	0.9	0