Indra K Vasil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6654501/publications.pdf

Version: 2024-02-01

43601 34493 10,348 175 54 95 citations h-index g-index papers 178 178 178 3348 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Philip R. White (1901–1968)—a tribute. In Vitro Cellular and Developmental Biology - Plant, 2011, 47, 201-204.	0.9	1
2	High molecular weight glutenin subunits and breadmaking in wheat. Journal of Cereal Science, 2009, 49, 322.	1.8	1
3	A short history of plant biotechnology. Phytochemistry Reviews, 2008, 7, 387-394.	3.1	21
4	A history of plant biotechnology: from the Cell Theory of Schleiden and Schwann to biotech crops. Plant Cell Reports, 2008, 27, 1423-1440.	2.8	101
5	History and evolution of the International Association for Plant Biotechnology (IAPB): 1963–2008. In Vitro Cellular and Developmental Biology - Plant, 2008, 44, 365-372.	0.9	1
6	Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Reports, 2007, 26, 1133-1154.	2.8	68
7	Transformation of Wheat Via Particle Bombardment. , 2006, 318, 273-284.		17
8	The story of transgenic cereals: The challenge, the debate, and the solutionâ€"A historical perspective. In Vitro Cellular and Developmental Biology - Plant, 2005, 41, 577-583.	0.9	32
9	The science and politics of plant biotechnologyâ€"a personal perspective. Nature Biotechnology, 2003, 21, 849-851.	9.4	54
10	Occurrence of chromosomal variations and plant regeneration from long-term-cultured citrus callus. In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 472-476.	0.9	52
11	Turning point article the wandering of a Botanist. In Vitro Cellular and Developmental Biology - Plant, 2002, 38, 383-395.	0.9	8
12	Evaluation of baking properties and gluten protein composition of field grown transgenic wheat lines expressing high molecular weight glutenin gene 1Ax1. Journal of Plant Physiology, 2001, 158, 521-528.	1.6	59
13	Signaling from the embryo conditions Vp1-mediated repression of alpha-amylase genes in the aleurone of developing maize seeds. Plant Journal, 1999, 19, 371-377.	2.8	47
14	Molecular Improvement of Wheat. Nature Biotechnology, 1999, 17, 30-30.	9.4	0
15	Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Molecular Breeding, 1999, 5, 53-63.	1.0	113
16	Plant Biotechnology: Achievements and Opportunities at the Threshold of the 21st Century. Current Plant Science and Biotechnology in Agriculture, 1999, , 9-16.	0.0	1
17	Molecular Improvement of Cereal Crops â€" An Introduction. Advances in Cellular and Molecular Biology of Plants, 1999, , 1-8.	0.2	3
18	Transgenic Cereals: Triticum aestivum (wheat). Advances in Cellular and Molecular Biology of Plants, 1999, , 133-147.	0.2	7

#	Article	IF	Citations
19	Barley Trypsin Inhibitor CME Confers Insect Resistance to Wheat. Current Plant Science and Biotechnology in Agriculture, 1999, , 453-456.	0.0	0
20	Agriculture: Biotechnology and food security for the 21st century: A real-world perspective. Nature Biotechnology, 1998, 16, 399-400.	9.4	46
21	Genetic engineering of wheat gluten. Trends in Plant Science, 1997, 2, 292-297.	4.3	55
22	The quiescent/colorless alleles of viviparous1 show that the conserved B3 domain of VP1 is not essential for ABA-regulated gene expression in the seed. Plant Journal, 1997, 12, 1231-1240.	2.8	58
23	Quantitative analysis of ultrastructural changes during zygotic and somatic embryogenesis in pearl millet (Pennisetum glaucum [L.] R. Br.). Sexual Plant Reproduction, 1996, 9, 286-298.	2.2	6
24	Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Reports, 1996, 16, 12-17.	2.8	189
25	The ultrastructure of somatic embryo development in pearl millet (<i>Pennisetum glaucum</i> ;) Tj ETQq1 1 0.7	'84314 rgB1 0.8	- /gverlock 1
26	Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Molecular Genetics and Genomics, 1996, 252, 162-168.	2.4	73
27	Milestones in crop biotechnology—Transgenic cassava and Agrobacterium-mediated transformation of maize. Nature Biotechnology, 1996, 14, 702-703.	9.4	11
28	Integration and expression of the high-molecular-weight glutenin subunit $1Ax1$ gene into wheat. Nature Biotechnology, 1996, 14, 1155-1159.	9.4	205
29	Localization and Interaction of the cis-Acting Elements for Abscisic Acid, VIVIPAROUS1, and Light Activation of the C1 Gene of Maize. Plant Cell, 1996, 8, 1171.	3.1	8
30	Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Reports, 1996, 16, 12-17.	2.8	13
31	The ultrastructure of somatic embryo development in pearl millet (Pennisetum glaucum; Poaceae). , 1996, 83, 28.		6
32	UNESCO centers on biotechnology. Nature Biotechnology, 1995, 13, 1165-1165.	9.4	0
33	T <scp>he ultrastructure of zygotic embryo development in pearl millet</scp> (<i>P<scp>ennisetum) Tj ETQq1</scp></i>	1 0.784314 0.8	rgBT /Overlo
34	Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize Genes and Development, 1995, 9, 2459-2469.	2.7	191
35	Overlap of Viviparous1 (VP1) and abscisic acid response elements in the Em promoter: G-box elements are sufficient but not necessary for VP1 transactivation Plant Cell, 1995, 7, 1511-1518.	3.1	139
36	Overlap of Viviparous 1 (VP1) and Abscisic Acid Response Elements in the Em Promoter: G-Box Elements Are Sufficient but Not Necessary for VP1 Transactivation. Plant Cell, 1995, 7, 1511.	3.1	23

#	Article	IF	CITATIONS
37	Cellular and Molecular Genetic Improvement of Cereals. Current Plant Science and Biotechnology in Agriculture, 1995, , 5-18.	0.0	14
38	Somatic Embryogenesis in Herbaceous Monocots. Current Plant Science and Biotechnology in Agriculture, 1995, , 417-470.	0.0	24
39	The ultrastructure of zygotic embryo development in pearl millet (Pennisetum glaucum; Poaceae). , 1995, 82, 205.		6
40	In vitro Culture of Cereals and Grasses. , 1994, , 293-312.		22
41	Molecular improvement of cereals. Plant Molecular Biology, 1994, 25, 925-937.	2.0	125
42	Automation of plant propagation. Plant Cell, Tissue and Organ Culture, 1994, 39, 105-108.	1.2	34
43	Rapid Production of Fertile Transgenic Plants of Rye (Secale cereale L.). Nature Biotechnology, 1994, 12, 1366-1371.	9.4	52
44	Maize Shrunken-1 intron and exon regions increase gene expression in maize protoplasts. Plant Science, 1994, 98, 151-161.	1.7	59
45	Molecular Genetic Improvement of Wheat. , 1994, , 539-547.		0
46	Genetic Transformation of Wheat. , 1994, , 11-14.		2
46	Genetic Transformation of Wheat., 1994, , 11-14. Rapid Production of Transgenic Wheat Plants by Direct Bombardment of Cultured Immature Embryos. Nature Biotechnology, 1993, 11, 1553-1558.	9.4	149
	Rapid Production of Transgenic Wheat Plants by Direct Bombardment of Cultured Immature Embryos.	9.4	
47	Rapid Production of Transgenic Wheat Plants by Direct Bombardment of Cultured Immature Embryos. Nature Biotechnology, 1993, 11, 1553-1558.		149
47	Rapid Production of Transgenic Wheat Plants by Direct Bombardment of Cultured Immature Embryos. Nature Biotechnology, 1993, 11, 1553-1558. Advances in cereal protoplast research. Physiologia Plantarum, 1992, 85, 279-283. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis	2.6	2
47 48 49	Rapid Production of Transgenic Wheat Plants by Direct Bombardment of Cultured Immature Embryos. Nature Biotechnology, 1993, 11, 1553-1558. Advances in cereal protoplast research. Physiologia Plantarum, 1992, 85, 279-283. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize Genes and Development, 1992, 6, 609-618. Herbicide Resistant Fertile Transgenic Wheat Plants Obtained by Microprojectile Bombardment of	2.6	149 2 242
47 48 49 50	Rapid Production of Transgenic Wheat Plants by Direct Bombardment of Cultured Immature Embryos. Nature Biotechnology, 1993, 11, 1553-1558. Advances in cereal protoplast research. Physiologia Plantarum, 1992, 85, 279-283. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize Genes and Development, 1992, 6, 609-618. Herbicide Resistant Fertile Transgenic Wheat Plants Obtained by Microprojectile Bombardment of Regenerable Embryogenic Callus. Nature Biotechnology, 1992, 10, 667-674. Cryopreservation of immature embryos, embryogenic callus and cell suspension cultures of	2.6 2.7 9.4	149 2 242 470
47 48 49 50	Rapid Production of Transgenic Wheat Plants by Direct Bombardment of Cultured Immature Embryos. Nature Biotechnology, 1993, 11, 1553-1558. Advances in cereal protoplast research. Physiologia Plantarum, 1992, 85, 279-283. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize Genes and Development, 1992, 6, 609-618. Herbicide Resistant Fertile Transgenic Wheat Plants Obtained by Microprojectile Bombardment of Regenerable Embryogenic Callus. Nature Biotechnology, 1992, 10, 667-674. Cryopreservation of immature embryos, embryogenic callus and cell suspension cultures of gramineous species. Plant Science, 1992, 83, 205-215. Multiple ocs-like elements required for efficient transcription of the mannopine synthase gene of	2.6 2.7 9.4	149 2 242 470

#	Article	IF	CITATIONS
55	Improved electrofusion of protoplasts of varied fusibility by selective pairing: application of asymmetric breakdown of plasma membranes. Plant Science, 1991, 75, 93-105.	1.7	6
56	Plant tissue culture and molecular biology as tools in understanding plant development and in plant improvement. Current Opinion in Biotechnology, 1991, 2, 158-163.	3.3	15
57	Stably Transformed Callus Lines from Microprojectile Bombardment of Cell Suspension Cultures of Wheat. Nature Biotechnology, 1991, 9, 743-747.	9.4	85
58	Rationale for the Scale-Up and Automation of Plant Propagation. , 1991, , 1-6.		7
59	Embryogenic callus, cell suspension and protoplast cultures of cereals. , 1991, , 227-242.		2
60	The Realities and Challenges of Plant Biotechnology. Nature Biotechnology, 1990, 8, 296-301.	9.4	28
61	Transgenic Cereals Becoming a Reality. Nature Biotechnology, 1990, 8, 797-797.	9.4	8
62	Characterization and regeneration of wheat (Triticum aestivum L.) embryogenic cell suspension cultures. Plant Cell Reports, 1990, 8, 714-717.	2.8	66
63	Regeneration of Plants from Embryogenic Suspension Culture Protoplasts of Wheat (Triticum) Tj ETQq1 1 0.7843	14 rgBT /0	Overlock 1 <mark>0</mark>
64	Selection of S-(2-aminoethyl)-l-cysteine tolerance in embryogenic calli and regenerated plants of Pennisetum purpureum schum. Plant Science, 1990, 67, 203-209.	1.7	7
65	Plant Regeneration from Embryogenic Calli, Cell Suspension Cultures and Protoplasts of Triticum aestivum L. (Wheat). Current Plant Science and Biotechnology in Agriculture, 1990, , 33-37.	0.0	5
66	DNA Methylation and Embryogenic Competence in Leaves and Callus of Napiergrass (Pennisetum) Tj ETQq0 0 0 rş	gBT/Overl	ock 10 Tf 50
67	Increased Gene Expression by the First Intron of Maize <i>Shrunken-1</i> Locus in Grass Species. Plant Physiology, 1989, 91, 1575-1579.	2.3	170
68	Comparative analysis of free DNA delivery and expression into protoplasts of Panicum maximum Jacq. (Guinea grass) by electroporation and polyethylene glycol. Plant Cell Reports, 1988, 7, 499-503.	2.8	31
69	Preferential amplification of mitochondrial DNA fragments in somatic hybrids of the Gramineae. Current Genetics, 1988, 13, 241-245.	0.8	22
70	Automated Plant Tissue Culture for Mass Propagation. Nature Biotechnology, 1988, 6, 1035-1040.	9.4	82
71	Progress in the Regeneration and Genetic Manipulation of Cereal Crops. Nature Biotechnology, 1988, 6, 397-402.	9.4	144
72	In vitro regeneration and genetic manipulation of grasses. Physiologia Plantarum, 1988, 73, 565-569.	2.6	16

#	Article	IF	CITATIONS
73	Somatic hybridization in the Gramineae: Triticum monococcum L. (Einkorn) + Pennisetum americanum (L.) K. Schum. (Pearl Millet). Journal of Plant Physiology, 1988, 132, 160-163.	1.6	31
74	Evaluation of Selectable Markers for Obtaining Stable Transformants in the Gramineae. Plant Physiology, 1988, 86, 602-606.	2.3	179
75	Promoter Strength Comparisons of Maize Shrunken 1 and Alcohol Dehydrogenase 1 and 2 Promoters in Mono- and Dicotyledonous Species. Plant Physiology, 1988, 88, 1063-1066.	2.3	21
76	Biotechnology for the Improvement of Cereal and Other Grass Crops. , 1988, , 43-47.		0
77	Endogenous Abscisic Acid and Indole-3-Acetic Acid and Somatic Embryogenesis in Cultured Leaf Explants of <i>Pennisetum purpureum</i> Schum Plant Physiology, 1987, 84, 47-51.	2.3	97
78	Constitutive and anaerobically induced DNase-I-hypersensitive sites in the 5' region of the maize Adh1 gene. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 799-803.	3.3	51
79	Physiology and Culture of Pollen. International Review of Cytology, 1987, , 127-174.	6.2	47
80	Developmental Morphogenesis and Genetic Manipulation in Tissue and Cell Cultures Of the Gramineae. Advances in Genetics, 1987, , 431-499.	0.8	52
81	In vitro selection for tolerance to and overproduction of lysine by embryogenic calli and regenerated plants of Pennisetum Americanum (L.) K. Schum Plant Science, 1987, 50, 195-203.	1.7	19
82	Developing Cell and Tissue Culture Systems for the Improvement of Cereal and Grass Crops. Journal of Plant Physiology, 1987, 128, 193-218.	1.6	327
83	Chromatin structure at the 5′ promoter region of the maize Adh2 gene and its role in gene regulation. Molecular Genetics and Genomics, 1987, 208, 185-190.	2.4	11
84	Formation of callus and somatic embryos from protoplasts of a commercial hybrid of maize (Zea mays) Tj ETQq0	0 0 rgBT /0	Overlock 10 ⁻
85	Rearrangements in the mitochondrial genome of somatic hybrid cell lines of Pennisetum americanum (L.) K. Schum. + Panicum maximum Jacq Theoretical and Applied Genetics, 1987, 74, 15-20.	1.8	40
86	Analysis of mitochondrial DNA from somatic hybrid cell lines of Saccharum officinarum (sugarcane) and Pennisetum americanum (pearl millet). Plant Molecular Biology, 1987, 8, 509-513.	2.0	23
87	Plant Regeneration from Protoplasts of Sugarcane (Saccharum officinarum L.). Journal of Plant Physiology, 1986, 126, 41-48.	1.6	104
88	Growth, Cytology and Flow Cytometry of Embryogenic Cell Suspension Cultures of Panicum maximum Jacq. and Pennisetum purpureum Schum Journal of Plant Physiology, 1986, 123, 211-227.	1.6	44
89	Plant Regeneration from Friable Embryogenic Callus and Cell Suspension Cultures of Zea mays L Journal of Plant Physiology, 1986, 124, 399-408.	1.6	93
90	MORPHOLOGY AND ULTRASTRUCTURE OF EMBRYOGENIC CELL SUSPENSION CULTURES OF PANICUM MAXIMUM (GUINEA GRASS) AND PENNISETUM PURPUREUM (NAPIER GRASS). American Journal of Botany, 1986, 73, 894-901.	0.8	28

#	Article	IF	CITATIONS
91	Somatic hybridization in the Gramineae: Saccharum officinarum L. (sugarcane) and Pennisetum americanum (L.) K. Schum. (pearl millet). Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5616-5619.	3.3	61
92	Somatic hybridization in the gramineae: Pennisetum americanum (L.) K. Schum. (Pearl millet) +Panicum maximum Jacq. (Guinea grass). Molecular Genetics and Genomics, 1986, 203, 365-370.	2.4	47
93	Relative Genetic Stability of Embryogenic Cultures of the Gramineae and Uniformity of Regenerated Plants., 1986,, 108-116.		8
94	Regeneration in Cereal and Other Grass Species. , 1986, , 121-150.		40
95	MORPHOLOGY AND ULTRASTRUCTURE OF EMBRYOGENIC CELL SUSPENSION CULTURES OF PANICUM MAXIMUM (GUINEA GRASS) AND PENNISETUM PURPUREUM (NAPIER GRASS). , 1986, 73, 894.		16
96	Cytogenetic characterization of embryogenic callus and regenerated plants of Pennisetum americanum (L.) K. Schum. Theoretical and Applied Genetics, 1985, 69-69, 575-581.	1.8	104
97	Histology of somatic embryogenesis in cultured immature embryos of maize (Zea mays L.). Protoplasma, 1985, 127, 1-8.	1.0	76
98	HISTOLOGY OF SOMATIC EMBRYOGENESIS IN PANICUM MAXIMUM (GUINEA GRASS). American Journal of Botany, 1985, 72, 1908-1913.	0.8	40
99	Somatic Embryogenesis and its Consequences in the Gramineae. , 1985, , 31-47.		53
100	HISTOLOGY OF SOMATIC EMBRYOGENESIS IN PANICUM MAXIMUM (GUINEA GRASS). , 1985, 72, 1908.		29
101	SOMATIC EMBRYOGENESIS IN LONGâ€TERM CALLUS CULTURES OF ZEA MAYS L. (GRAMINEAE). American Journal of Botany, 1984, 71, 158-161.	0.8	35
102	Uniformity of plants regenerated from somatic embryos of Panicum maximum Jacq. (Guinea grass). Theoretical and Applied Genetics, 1984, 67, 155-159.	1.8	70
103	Ontogeny of somatic embryos of <i>Pennisetum americanum</i> . II. In cultured immature inflorescences. Canadian Journal of Botany, 1984, 62, 1629-1635.	1.2	53
104	Somatic Embryogenesis and Plant Regeneration from Cultured Immature Embryos of Rye (Secale) Tj ETQq0 0 0	rgBT_/Over	rlock 10 Tf 50
105	Plant regeneration by somatic embryogenesis from cultured young inflorescenses of Sorghum arundinaceum (Desv.) stapf. var. Sudanense (sudan grass). Plant Science Letters, 1984, 35, 153-157.	1.9	39
106	Selection and characterization of NaCl tolerant cells from embryogenic cultures of Pennisetum purpureum schum. (Napier grass). Plant Science Letters, 1984, 37, 157-164.	1.9	40
107	Optimization of Plant Regeneration from Long Term Embryogenic Callus Cultures of Pennisetum purpureum Schum. (Napier grass). Journal of Plant Physiology, 1984, 117, 147-156.	1.6	42
108	Induction and Maintenance of Embryogenic Callus Cultures of Gramineae., 1984,, 36-42.		13

#	Article	IF	CITATIONS
109	Isolation and Maintenance of Embryogenic Cell Suspension Cultures of Gramineae., 1984,, 152-158.		11
110	Plastic Embedding for Light Microscopy. , 1984, , 684-688.		1
111	Preparation of Cultured Tissues for Scanning Electron Microscopy. , 1984, , 738-743.		4
112	Somatic Embryogenesis in Long-Term Callus Cultures of Zea mays L. (Gramineae). American Journal of Botany, 1984, 71, 158.	0.8	36
113	Callus induction and growth from the mature embryo of Triticum aestivum (Wheat). Protoplasma, 1983, 115, 104-113.	1.0	28
114	Improved efficiency and normalization of somatic embryogenesis inTriticum aestivum (wheat). Protoplasma, 1983, 117, 40-44.	1.0	92
115	Somatic embryogenesis in sugarcane (Saccharum officinarum L.) I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma, 1983, 118, 169-180.	1.0	173
116	Plant Regeneration by Somatic Embryogenesis From Parts of Cultured Mature Embryos of Pennisetum americanum (L.) K. Schum. Zeitschrift FÄ-¼r Pflanzenphysiologie, 1983, 111, 319-325.	1.4	51
117	Plant Regeneration From Protoplasts of Napier Grass (Pennisetum purpureum Schum.). Zeitschrift Fýr Pflanzenphysiologie, 1983, 111, 233-239.	1.4	75
118	PROLIFERATION AND PLANT REGENERATION FROM THE NODAL REGION OF ZEA MAYS L. (MAIZE, GRAMINEAE) EMBRYOS. American Journal of Botany, 1983, 70, 951-954.	0.8	10
119	PROLIFERATION OF AND PLANT REGENERATION FROM THE EPIBLAST OF TRITICUM AESTIVUM (WHEAT;) Tj ETQq1	1.0.7843	14 rgBT /
120	Regeneration of Plants from Single Cells of Cereals and Grasses. , 1983, , 233-252.		51
121	PROLIFERATION OF AND PLANT REGENERATION FROM THE EPIBLAST OF TRITICUM AESTIVUM (WHEAT;) Tj ETQq1	1 0.7843	14 rgBT /
122	PROLIFERATION AND PLANT REGENERATION FROM THE NODAL REGION OF ZEA MAYS L. (MAIZE, GRAMINEAE) EMBRYOS., 1983, 70, 951.		12
123	Somatic Embryos and Plants from Cultured Protoplasts of Pennisetum Purpureum Schum. (Napier) Tj ETQq1 1 0.7	84314 rgE	BŢ/Overloc
124	The Ontogeny of Somatic Embryos of Pennisetum americanum (L.) K. Schum. I. In Cultured Immature Embryos. Botanical Gazette, 1982, 143, 454-465.	0.6	117
125	Somatic embryogenesis and plant regeneration from inflorescence segments of Pennisetum purpureum schum. (Napier or elephant grass). Plant Science Letters, 1982, 25, 147-154.	1.9	98
126	Induction of Nitrogenase Activity in Azospirillum brasilense by Conditioned Medium from Cell Suspension Cultures of Pennisetum americanum (Pearl Millet) and Panicum maximum (Guinea Grass). Zeitschrift Für Pflanzenphysiologie, 1982, 106, 139-147.	1.4	6

#	Article	IF	CITATIONS
127	CHARACTERIZATION OF AN EMBRYOGENIC CELL SUSPENSION CULTURE DERIVED FROM CULTURED INFLORESCENCES OF PENNISETUM AMERICANUM (PEARL MILLET, GRAMINEAE). American Journal of Botany, 1982, 69, 1441-1449.	0.8	72
128	SOMATIC EMBRYOGENESIS AND PLANT REGENERATION IN TISSUE CULTURES OF PANICUM MAXIMUM JACQ American Journal of Botany, 1982, 69, 77-81.	0.8	61
129	Plant regeneration from cultured immature embryos and inflorescences ofTriticum aestivum L. (wheat): Evidence for somatic embryogenesis. Protoplasma, 1982, 110, 95-105.	1.0	273
130	Somatic embryogenesis in Zea mays L Theoretical and Applied Genetics, 1982, 62, 109-112.	1.8	141
131	PLANT CELL CULTURE AND SOMATIC CELL GENETICS OF CEREALS AND GRASSES11Based on an article published in Plant Molecular Biology Association Newsletter (2, 9-23. 1981) , 1982, , 179-203.		28
132	SOMATIC EMBRYOGENESIS AND PLANT REGENERATION IN TISSUE CULTURES OF PANICUM MAXIMUM JACQ , 1982, 69, 77.		39
133	CHARACTERIZATION OF AN EMBRYOGENIC CELL SUSPENSION CULTURE DERIVED FROM CULTURED INFLORESCENCES OF PENNISETUM AMERICANUM (PEARL MILLET, GRAMINEAE). , 1982, 69, 1441.		70
134	Isolation and Culture of Protoplasts of Panicum maximum Jacq. (Guinea Grass): Somatic Embryogenesis and Plantlet Formation. Zeitschrift Fýr Pflanzenphysiologie, 1981, 104, 311-318.	1.4	97
135	SOMATIC EMBRYOGENESIS AND PLANT REGENERATION FROM TISSUE CULTURES OF PENNISETUM AMERICANUM, AND P. AMERICANUM x P. PURPUREUM HYBRID. American Journal of Botany, 1981, 68, 864-872.	0.8	141
136	Somatic embryogenesis and plant regeneration from leaf tissues and anthers of Pennisetum purpureum Schum Theoretical and Applied Genetics, 1981, 59, 269-273.	1.8	140
137	Somatic embryogenesis and plant regeneration from leaf tissues of Panicum maximum Jacq Theoretical and Applied Genetics, 1981, 59, 275-280.	1.8	119
138	Somatic Embryogenesis in Cereals. BioScience, 1981, 31, 246-248.	2.2	8
139	SOMATIC EMBRYOGENESIS AND PLANT REGENERATION FROM TISSUE CULTURES OF PENNISETUM AMERICANUM, AND P. AMERICANUM x P. PURPUREUM HYBRID. , 1981, 68, 864.		73
140	Isolation and culture of cereal protoplasts. Theoretical and Applied Genetics, 1980, 56, 97-99.	1.8	221
141	Biology of <i>Azospirillum</i> -Sugarcane Association: Enhancement of Nitrogenase Activity. Applied and Environmental Microbiology, 1980, 39, 642-649.	1.4	52
142	Use of amino acid analogue-resistant cell lines for selection of Nicotiana sylvestris somatic cell hybrids. Theoretical and Applied Genetics, 1979, 55, 107-112.	1.8	60
143	The biology ofAzospirillum-sugarcane association II. Ultrastructure. Protoplasma, 1979, 101, 143-163.	1.0	29
144	Plant Tissue Cultures in Genetics and Plant Breeding. Advances in Genetics, 1979, , 127-215.	0.8	66

#	Article	IF	CITATIONS
145	Isolation and Culture of Cereal Protoplasts I. Callus Formation from Pearl Millet (Pennisetum) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 T
146	The Biology of Azospirillum-sugarcane Association I. Establishment of the Association. Zeitschrift FÃ $\frac{1}{4}$ r Pflanzenphysiologie, 1979, 95, 141-147.	1.4	19
147	Somatic Hybridization and Genetic Manipulation in Plants. , 1979, , 63-84.		4
148	The ultrastructure of pollen development in gymnosperms. Bulletin De La Société Botanique De France Actualités Botaniques, 1978, 125, 115-120.	0.0	6
149	EXPERIMENTAL STUDIES OF THE SHOOT APICAL MERISTEM OF SEED PLANTS. I. MORPHOLOGICAL AND CYTOCHEMICAL EFFECTS OF IAA APPLIED TO THE EXPOSED MERISTEM OF LUPINUS ALBUS. , 1978, 65, 40.		5
150	The role of lectins in cell division of tissue cultures of soybean and tobacco. Zeitschrift FÃ $\frac{1}{4}$ r Pflanzenphysiologie, 1977, 84, 349-353.	1.4	6
151	The Dynamics of Cell Proliferation in Haploid and Diploid Tissues of Nicotiana tabacum. Zeitschrift F $ ilde{A}^1\!\!/4$ r Pflanzenphysiologie, 1976, 77, 222-236.	1.4	31
152	Plant tissue culture media. In Vitro, 1976, 12, 473-478.	1.2	309
153	The Progress. Problems, and Prospects of Plant Protoplast Research. Advances in Agronomy, 1976, , 119-160.	2.4	41
154	Induced transfer of higher plant chloroplasts into fungal protoplasts. Science, 1975, 190, 680-680.	6.0	36
155	Experimental Production of Pollen Haploids and their Uses. Zeitschrift FÃ $\frac{1}{4}$ r Pflanzenphysiologie, 1975, 76, 191-212.	1.4	47
156	Regeneration of tobacco and petunia plants from protoplasts an culture of corn protoplasts. In Vitro, 1974, 10, 83-96.	1.2	47
157	The new biology of Pollen. Die Naturwissenschaften, 1973, 60, 247-253.	0.6	47
158	Totipotency and embryogenesis in plant cell and tissue cultures. In Vitro, 1972, 8, 117-125.	1.2	72
159	Ultrastructure of the postmeiotic nuclear envelope in microspores of Podocarpus macrophyllus. Journal of Ultrastructure Research, 1970, 32, 307-315.	1.4	46
160	PHYSIOLOGY AND CYTOLOGY OF ANTHER DEVELOPMEENT. Biological Reviews, 1967, 42, 327-366.	4.7	112
161	Growth and chlorophyll production in plant callus tissues grown in vitro. Planta, 1966, 68, 69-82.	1.6	59
162	VARIATIONS OF MORPHOGENETIC BEHAVIOR IN PLANT TISSUE CULTURES I. CICHORIUM ENDIVIA. , 1966, 53, 860.		40

#	Article	IF	CITATIONS
163	VARIATIONS OF MORPHOGENETIC BEHAVIOR IN PLANT TISSUE CULTURES II. PETROSELINUM HORTENSE. , 1966, 53, 869.		27
164	Studies on Pollen Germination of Certain Solanaceae. Bulletin of the Torrey Botanical Club, 1964, 91, 370.	0.6	6
165	Thymidine kinase: The dissociability and its bearing on the enzyme activity in plant materials. Biochimica Et Biophysica Acta (BBA) - Specialized Section on Enzymological Subjects, 1964, 85, 50-59.	0.9	9
166	Endive Plantlets from Freely Suspended Cells and Cell Groups Grown in vitro. Science, 1964, 146, 76-77.	6.0	48
167	Chapter 10 Isolation and Culture of Protoplasts. International Review of Cytology, 1961, 11, 1-19.	6.2	12
168	Chapter 11 Protoplast Fusion and Somatic Hybridization. International Review of Cytology, 1961, 11, 21-46.	6.2	17
169	Chapter 13 Nitrogen Fixation and Plant Tissue Culture. International Review of Cytology, 1961, , 81-99.	6.2	5
170	Physiology of pollen. Botanical Review, The, 1961, 27, 325-381.	1.7	143
171	Pollen Germination in some Gramineae: Pennisetum typhoideum. Nature, 1960, 187, 1134-1135.	13.7	15
172	STUDIES ON POLLEN GERMINATION OF CERTAIN CUCURBITACEAE. , 1960, 47, 239.		20
173	Cultivation of Excised Anthersin vitroâ€"Effect of Nucleic Acids. Journal of Experimental Botany, 1959, 10, 399-408.	2.4	28
174	Nucleic Acids and Survival of Excised Anthers in vitro. Science, 1959, 129, 1487-1488.	6.0	15
175	Effect of Kinetin and Gibberellic Acid on Excised Anthers of Allium cepa. Science, 1957, 126, 1294-1295.	6.0	27